Impact of Structural and Microenvironmental Abnormalities in Olfactory Cleft on Olfaction in CRS

NCT ID: NCT06834477

Last Updated: 2025-02-19

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

NOT_YET_RECRUITING

Total Enrollment

80 participants

Study Classification

OBSERVATIONAL

Study Start Date

2025-03-14

Study Completion Date

2027-03-14

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The purpose of this research is to investigate the impact of structural abnormalities and microenvironmental changes in the olfactory cleft on olfactory function in patients with chronic rhinosinusitis (CRS). It sought to elucidate the complex relationships among structural abnormalities, microenvironmental changes, and inflammatory factors contributing to olfactory dysfunction through a multidimensional assessment encompassing imaging, aerodynamics, biomarker , and histopathology analysis.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Olfactory dysfunction (OD) is a critical symptom among patients with CRS, affecting up to 83% of individuals with the condition. Currently, it is considered that the inflammation in olfactory cleft is a central factor contributing to both conductive and sensorineural OD in patients with CRS. Inflammation in the olfactory cleft could impair olfaction by altering the mucosal and mucus microenvironment thereby causing damage to the olfactory neuroepithelium, by physically impeding delivery of odorant-containing air to the olfactory cleft, or a combination of both mechanisms.

Existing studies mainly focus on isolated mechanisms, such as inflammation-induced physical obstruction or injury of olfactory epithelium. However, limited research has explored how structural abnormalities and microenvironmental changes in the olfactory cleft might interact to contribute to olfactory dysfunction. This research aimed to evaluate the relationship between structural abnormalities and microenvironmental changes in the olfactory cleft and their impact on olfactory function in patients with CRS using a multidimensional approach integrating imaging, pathology, and functional analysis.

This is a retrospective study. Patients with CRS admitted for endoscopic sinus surgery (n = 70) and healthy controls undergoing surgery for the deviated septum (n = 10) were included. All the participants had undergone:

1. Clinical assessment of olfactory function and quality of life

1. Olfactory measurements had been conducted preoperatively using the Sniffin' Sticks Test to evaluate olfactory threshold (OT), olfactory discrimination (OD), olfactory identification (OI), and the overall composite scores (TDI). A TDI score \> 30.75, 16-30.75, and ≤ 15 indicates normosmia, hyposmia, and anosmia, respectively.
2. The 22-item Sino-Nasal Outcome Test (SNOT-22) had been administered to evaluate patient-reported subjective outcomes.
3. The Questionnaire of Olfactory Disorders Negative Statements (QOD-NS) was utilized to assess the olfactory-specific quality of life.
4. The visual analog scale(VAS)for olfaction was employed to measure patients' self-reported olfaction.
2. Evaluation of structural abnormalities and patency of the olfactory cleft

Computed tomography scans were obtained in every participant. The anterior boundary of OC is defined by the anterior attachment of the middle turbinate; the posterior boundary corresponding to the anterior face of the sphenoid sinus; the lateral boundaries are defined as the attachment of the middle and/or superior turbinate laterally and the nasal septum medially. The olfactory cleft is further divided into anterior and posterior, divided by the anterior end of the superior turbinate. The olfactory cleft opacification is defined as the normal airway filled with a value representing soft tissue and /or presence of close contact between the nasal turbinates and the nasal septum. The opacification percentage in the anterior olfactory cleft is calculated using the lower margin of the middle turbinate and the cribriform plate as the vertical boundaries. The opacification percentage in the posterior olfactory cleft is calculated using the lower margin of the superior turbinate and the cribriform plate as the vertical boundaries. The olfactory cleft opacifications were graded on a scale of 0-4 by the ratio of the opacified area to the whole area of the corresponding region of the olfactory cleft, with 0 (no opacification), 1 (25%), 2 (25%-50%), 3 (50%-75%), and 4 (\>75%). Then we evaluated:
1. The original version of olfactory cleft CT score, calculated as the sum of the anterior and posterior olfactory cleft opacification scores, ranged from 1 to 8.
2. The modified version of olfactory cleft CT score: CT scores for unilateral olfactory cleft, including the anterior and posterior regions, specifically the left anterior, left posterior, right anterior, and right posterior olfactory cleft, as well as their total sum. Additionally, a more detailed assessment is performed by recording whether opacification is present at the apex and the middle-lower portion of each olfactory cleft subregion. Each subregion is further divided into anterior, middle, and posterior areas, with each area being independently assessed. A score of 1 is assigned if opacification is observed, and 0 if absent.

To further quantify the impact of olfactory cleft obstruction on olfactory airflow, this study employs three-dimensional modeling and computational fluid dynamics (CFD) analysis of the nasal cavity based on CT imaging data of sinuses. The air flow, velocity, pressure, and air flow ratio in the olfactory cleft were obtained by the hydrodynamics analysis method.
3. Evaluation of the mucus and mucosal microenvironment in the olfactory cleft

1. Patients with CRS were categorized into two clinical phenotypes, CRS with nasal polyps (CRSwNP) and CRS without nasal polyps (CRSsNP), based on histology and physical examination.
2. To investigate the inflammatory phenotypes of CRS, hematoxylin and eosin (H\&E) staining were performed to identify the predominant inflammatory cell types within the lamina propria. Patients with CRS were divided into eosinophilic CRS and non-eosinophilic CRS. The eosinophilic phenotype of CRS was defined when the frequency of tissue eosinophils exceeded 10% of the total infiltrating cells per high-power field.
3. Olfactory cleft mucus was collected to quantify the level of olfactory cleft mucus galectin-10 and eosinophil-derived neurotoxin (EDN) using commercial human enzyme-linked immunosorbent assay kits. Th1/Th2-related cytokines, including IL-2, IL-4, IL-5, IL-6, IFN-γ, TNF, and IL-10, were detected using a flow cytometry-based bead array (CBA) capture assay.
4. Olfactory cleft mucosal specimens were collected from the anterior portion of the superior turbinate using a through-cut forceps during surgery for immunohistochemical analysis of olfactory marker protein (OMP), to evaluate the expression levels of mature olfactory neurons.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Chronic Rhinosinusitis (CRS)

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

OTHER

Study Time Perspective

RETROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Patients with CRS admitted for endoscopic sinus surgery

Computed Tomography

Intervention Type OTHER

low-dose CT is taken

healthy controls undergoing surgery for the deviated septum

Computed Tomography

Intervention Type OTHER

low-dose CT is taken

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Computed Tomography

low-dose CT is taken

Intervention Type OTHER

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

collection of superior turbinate biopsy specimens collection of olfactory cleft mucus

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Diagnosed with CRS based on the diagnostic criteria of the EPOS guideline.
2. Provision of signed and dated informed consent form.
3. Patients with CRS admitted to the hospital awaiting endoscopic sinus surgery.


1. Healthy controls undergoing surgery for the deviated septum.
2. Provision of signed and dated informed consent form.

Exclusion Criteria

1. Those who have taken oral glucocorticoids, antibiotics, anti-leukotrienes, and antihistamines within four weeks.
2. Patients who have had prior sinus surgery.
3. Patients with fungal sinusitis, inverted papilloma, or other nasal diseases.
4. Patients with a diagnosis of immune suppression or suspicion of malignancy that may be affecting the nose/paranasal sinuses.
5. Patients who are mentally or physically unable to perform olfactory tests


1. Patients with nasal polyps, sinusitis, nasal cavity tumors and other diseases.
2. Patients with hyposmia or anosmia.
3. Patients with diagnosed neurodegenerative disease.
4. Patients who are mentally or physically unable to perform olfactory tests.
Minimum Eligible Age

18 Years

Maximum Eligible Age

80 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Peking University Third Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Dawei Wu

Associate Researcher

Responsibility Role PRINCIPAL_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, People's Republic of China

Beijing, Haidian District, China

Site Status

Countries

Review the countries where the study has at least one active or historical site.

China

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Dawei Wu, MD, PhD

Role: CONTACT

+86-10-13522503401

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Dawei Wu, MD, PhD

Role: primary

+86-10-13522503401

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

9059102

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

The Sinonasal Microbiome
NCT06822725 ACTIVE_NOT_RECRUITING
CST1-Guided Oral Glucocorticoids Management for CRSwNP
NCT05598411 NOT_YET_RECRUITING PHASE4
QOL Outcomes in CRS With Polyps
NCT03144375 TERMINATED NA