Therapeutic Effect of Blood Flow Reconstruction in IVADA

NCT ID: NCT06134557

Last Updated: 2024-02-23

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Total Enrollment

200 participants

Study Classification

OBSERVATIONAL

Study Start Date

2023-12-20

Study Completion Date

2024-02-28

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

IVADA (Intracranial vertebral artery dissecting aneurysms)is one of the causes of subarachnoid hemorrhage or posterior circulation ischemia with high mortality and disability. Current endovascular therapies for IVADA mainly include parent artery occlusion and endovascular blood reconstructive techniques. The method of parent artery occlusion requires the sacrifice of one vertebral artery. For the IVADA patients whose dissection involves PICA(posterior inferior cerebellar artery)or anterior spinal artery, severe ischemia even infarction of brain stem or cerebellar may be caused after parent artery occlusion , they are usually irreversible damage, so that method are rarely used now.Endovascular flood reconstructive techniques has become the mainstream, including stent-alone or overlapping stent treatment ,stent-assisted coiling techniques, single flow diverter(FD) stents or flow diverter assisted coil, etc.With the improvements in stents, flow diverter stent is efficient, while they are associated with the risk of ischemia, especially when vital arterial branches are covered. It has been reported that FD techniques have certain advantages over traditional stents in the treatment of anterior circulating intracranial aneurysms. In the treatment of posterior circulating aneurysms, perioperative ischemic complications increase due to their influence on the blood flow of perforator arteries, but there are few long-term observations at present. Currently, studies directly contrasting flow diverter and conventional stents in patients with IVADA are rare. Therefore, we performed the study to compare the safety and efficacy between flow diverters and conventional stents in IVADA patients undergoing endovascular therapy. Stent-assisted coiling is the preferred option for most surgeons. In addition,It is believed that dense packing is not necessary as long as the aneurysm neck is covered to isolate the dissection. How ever,whether it is really necessary to adjunct coil,and if it is necessary, what is the ideal packing density of coils, there is no clear conclusion at present.This study aimed to compare the safety and efficacy between flow diverter and conventional stents in patients with IVADA, determine the ideal packing density of coils after FD stent placement,and to observe the hemodynamic changes before and after the treatment of FD stent.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

This is a single-center, retrospective, and observational study.This retrospective study was approved by the Medical Ethics Committee of Qilu Hospital of Shandong University.Patients diagnosed with IVADA who underwent endovascular blood reconstructive treatment in the institution from December 2011 to December 2022 were eligible.Patient age, sex,index, clinical presentation, smoking, drinking, hypertension, diabetes mellitus, hyperlipidemia, modified Rankin Scale (mRS) score, aneurysm size, and arterial branch anatomy were recorded. Treatment details, complications, and angiographic and clinical outcomes were also recorded.

The optimal treatment strategy was evaluated based on the patients' neurological condition and comorbidities, the angioarchitectural features of the aneurysm, and the decision of the patient and their first degree relatives. The conventional stents included Neuroform (Stryker Neurovascular, USA), Enterprise (Cordis Neurovascular, USA), and Solitaire (ev3, USA) stents, and a low-profile visualized intraluminal support (LVIS) device (MicroVention Terumo, USA) was used. The flow diverters included Tubridge (MicroPort NeuroTech, China) and Pipeline (Medtronic, USA) devices. All EVT procedures were performed via a femoral artery approach under general anesthesia. An intravenous bolus of heparin (5000 IU) was administered before the procedure. Heparin was discontinued at the end of the procedure. A standard 6F or 8F guide catheter was advanced into the subclavian artery, proximal to the vertebral artery. An intermediate catheter (Navien, Medtronic) was then inserted into the V2 segment of the vertebral artery. A stent microcatheter was used to access the true lumen of the aneurysm in the posterior cerebral artery through the guidewire. For cases with additional coil insertion, a coil microcatheter was placed in the aneurysm sac. The stent was partially deployed to cover the aneurysm neck and temporarily jail the microcatheter, after which the aneurysm was loosely or densely packed with detachable coils before the stent was completely deployed. For long segmental lesions in which the aneurysm neck could not be covered completely with a single stent, an additional stent was extended into the bridged segment. If a single stent was not sufficient to alter the intra-aneurysmal hemodynamics, overlapping stents were used to reconstruct the lesion.

The anti-platelet drugs (aspirin 100 mg/day and clopidogrel 75 mg/day) were administered for at least 3 days prior to the procedure for patients with unruptured aneurysms. All patients with ruptured aneurysm were given aspirin and clopidogrel 300mg by oral or nasal feeding before general anesthesia was administered.The anti-platelet drugs (aspirin 100 mg/day and clopidogrel 75 mg/day) were administered for 3 months post-operatively, followed by aspirin alone for 3 months. Patients who had insufficient responses to aspirin or clopidogrel received a substitute antiplatelet agent (ticagrelor).The diameter and length of the stent were chosen according to the dimensions of the affected parent vessel.

The main complications during hospitalization were hemorrhage, infarction, or hydrocephalus requiring shunting. Procedural complications included those that occurred intraoperatively or after EVT. Periprocedural complications included those that occurred during hospitalization. Clinical follow-up was performed via neurological examinations or telephone interviews. Clinical outcomes were assigned based on the modified Rankin scale (mRS) score at the last follow-up: 0-2, favorable outcome; 3-6, unfavorable outcome. Cerebral angiography was performed at 6 months after EVT to confirm aneurysm occlusion and the patency of the VA(vertebral artery). Aneurysm occlusions on immediate and final follow-up cerebral angiography were categorized as complete occlusion (no filling of the contrast agent in the aneurysm sac) or incomplete occlusion (residual filling of the contrast agent in the aneurysm neck or sac).

Imaging follow-up was performed using DSA(digital subtraction angiography)、CTA(Computer Tomographic Angiography)、MRA(Magnetic Resonance Angiography) approximately 6 months after stenting. The occlusion rate was evaluated using the O'KellyMarotta (OKM) grading scale . Recurrence was defined as an aneurysm that showed an increased percentage of contrast filling within the aneurysmal sac on follow-up angiography. All imaging studies were evaluated independently by two neurointerventionalists with more than 5 years of experience. Any disagreements were resolved by third neurointerventionalists with 10 years of experience. Clinical outcomes were evaluated by determining the mRS score at follow-up visits or via telephone interviews.

Using The R Programming Language software,Propensity Score Matching 1:2 (caliper value 0.05), to make it has no statistical differences between the two groups in baseline information. The matched case data will be statistically analyzed by IBM SPSS Statistics27.0(IBM Corp, New York, USA)。 The one-sample Kolmogorov-Smirnov test was used to test the normality of the data distribution for continuous variables. Continuous variables that conforming to a normal distribution are presented as mean and SD, and do not conform to the normal distribution are expressed by the median (25%,75%).Categorical variables are presented as numbers (frequency). Continuous variables were compared using the Student's t-test or Mann-Whitney U test, as appropriate. Categorical variables were compared using the chi-square test or Fisher's exact test, as appropriate. Variables identified as potential predictors in univariate analysis (p\<0.1) were included in binary logistic regression analysis (forward) to determine their status as independent predictors. A p value of \<0.05 was considered statistically significant.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Intracranial Aneurysm

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

RETROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

flow diverter stents

single flow diverter(FD) stents or flow diverter assisted coil

conventional stents

Intervention Type PROCEDURE

performed the study to compare the safety and efficacy between flow diverters and conventional stents in IVADA patients undergoing endovascular therapy. Stent-assisted coiling is the preferred option for most surgeons. In addition,It is believed that dense packing is not necessary as long as the aneurysm neck is covered to isolate the dissection. How ever,whether it is really necessary to adjunct coil,and if it is necesary, what is the ideal packing density of coils, there is no clear conclusion at present.This study aimed to compare the safety and efficacy between flow diverter and conventional stents in patients with IVADA, determine the ideal packing density of coils after FD stent placement,and to observe the hemodynamic changes before and after the treatment of FD stent.

conventional stents

stent-alone or overlapping stent treatment ,stent-assisted coiling techniques

conventional stents

Intervention Type PROCEDURE

performed the study to compare the safety and efficacy between flow diverters and conventional stents in IVADA patients undergoing endovascular therapy. Stent-assisted coiling is the preferred option for most surgeons. In addition,It is believed that dense packing is not necessary as long as the aneurysm neck is covered to isolate the dissection. How ever,whether it is really necessary to adjunct coil,and if it is necesary, what is the ideal packing density of coils, there is no clear conclusion at present.This study aimed to compare the safety and efficacy between flow diverter and conventional stents in patients with IVADA, determine the ideal packing density of coils after FD stent placement,and to observe the hemodynamic changes before and after the treatment of FD stent.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

conventional stents

performed the study to compare the safety and efficacy between flow diverters and conventional stents in IVADA patients undergoing endovascular therapy. Stent-assisted coiling is the preferred option for most surgeons. In addition,It is believed that dense packing is not necessary as long as the aneurysm neck is covered to isolate the dissection. How ever,whether it is really necessary to adjunct coil,and if it is necesary, what is the ideal packing density of coils, there is no clear conclusion at present.This study aimed to compare the safety and efficacy between flow diverter and conventional stents in patients with IVADA, determine the ideal packing density of coils after FD stent placement,and to observe the hemodynamic changes before and after the treatment of FD stent.

Intervention Type PROCEDURE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Patients with asymptomatic or SAH symptoms of intracranial hypertension
2. After a preliminary diagnosis of cerebrovascular CTA or MRA, DSA angiography confirmed IVADA
3. IVADA involves intracranial segment of vertebral artery (V4 )

Exclusion Criteria

* : Patients with SAH caused by trauma or other cerebrovascular diseases

2: IVADA involves the extracranial vertebral artery

3: Vertebrobasilar artery tortuosity and dilatation
Minimum Eligible Age

30 Years

Maximum Eligible Age

80 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Qilu Hospital of Shandong University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Yunyan Wang

Role: STUDY_CHAIR

Medical Ethics Committee of Qilu Hospital of Shandong University

Weiying Zhong

Role: STUDY_DIRECTOR

Medical Ethics Committee of Qilu Hospital of Shandong University

Maogui li

Role: PRINCIPAL_INVESTIGATOR

Medical Ethics Committee of Qilu Hospital of Shandong University

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Qilu Hospital of Shandong University

Jinan, , China

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

China

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Tongfu Zhang

Role: CONTACT

0086-18054566265

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Tongfu Zhang

Role: primary

18054566265

References

Explore related publications, articles, or registry entries linked to this study.

Suzuki H, Kitagawa T, Gotoh M, Mitsueda-Ono T, Matsui M. Cervical Cord Infarction Caused by Dissection of the Intracranial Segment of the Vertebral Artery. Intern Med. 2018 Nov 15;57(22):3321-3324. doi: 10.2169/internalmedicine.0608-17. Epub 2018 Jul 6.

Reference Type RESULT
PMID: 29984769 (View on PubMed)

Debette S, Compter A, Labeyrie MA, Uyttenboogaart M, Metso TM, Majersik JJ, Goeggel-Simonetti B, Engelter ST, Pezzini A, Bijlenga P, Southerland AM, Naggara O, Bejot Y, Cole JW, Ducros A, Giacalone G, Schilling S, Reiner P, Sarikaya H, Welleweerd JC, Kappelle LJ, de Borst GJ, Bonati LH, Jung S, Thijs V, Martin JJ, Brandt T, Grond-Ginsbach C, Kloss M, Mizutani T, Minematsu K, Meschia JF, Pereira VM, Bersano A, Touze E, Lyrer PA, Leys D, Chabriat H, Markus HS, Worrall BB, Chabrier S, Baumgartner R, Stapf C, Tatlisumak T, Arnold M, Bousser MG. Epidemiology, pathophysiology, diagnosis, and management of intracranial artery dissection. Lancet Neurol. 2015 Jun;14(6):640-54. doi: 10.1016/S1474-4422(15)00009-5.

Reference Type RESULT
PMID: 25987283 (View on PubMed)

Mizutani T, Aruga T, Kirino T, Miki Y, Saito I, Tsuchida T. Recurrent subarachnoid hemorrhage from untreated ruptured vertebrobasilar dissecting aneurysms. Neurosurgery. 1995 May;36(5):905-11; discussion 912-3. doi: 10.1227/00006123-199505000-00003.

Reference Type RESULT
PMID: 7791980 (View on PubMed)

Gottesman RF, Sharma P, Robinson KA, Arnan M, Tsui M, Saber-Tehrani A, Newman-Toker DE. Imaging characteristics of symptomatic vertebral artery dissection: a systematic review. Neurologist. 2012 Sep;18(5):255-60. doi: 10.1097/NRL.0b013e3182675511.

Reference Type RESULT
PMID: 22931729 (View on PubMed)

Han M, Rim NJ, Lee JS, Kim SY, Choi JW. Feasibility of high-resolution MR imaging for the diagnosis of intracranial vertebrobasilar artery dissection. Eur Radiol. 2014 Dec;24(12):3017-24. doi: 10.1007/s00330-014-3296-5. Epub 2014 Jul 14.

Reference Type RESULT
PMID: 25017728 (View on PubMed)

Zang YZ, Wang ZG, Wang CW, Zhang Y, Ding X, Wang XF. [Clinical analysis of endovascular strategies in the treatment of vertebrobasilar dissecting aneurysms]. Zhonghua Yi Xue Za Zhi. 2016 Nov 8;96(41):3329-3332. doi: 10.3760/cma.j.issn.0376-2491.2016.41.011. Chinese.

Reference Type RESULT
PMID: 27852380 (View on PubMed)

Kim BM, Shin YS, Baik MW, Lee DH, Jeon P, Baik SK, Lee TH, Kang DH, Suh SI, Byun JS, Jung JY, Kwon K, Kim DJ, Park KY, Kim BS, Park JC, Kim SR, Kim YW, Kim H, Jo K, Yoon CH, Kim YS. Pipeline Embolization Device for Large/Giant or Fusiform Aneurysms: An Initial Multi-Center Experience in Korea. Neurointervention. 2016 Mar;11(1):10-7. doi: 10.5469/neuroint.2016.11.1.10. Epub 2016 Mar 3.

Reference Type RESULT
PMID: 26958407 (View on PubMed)

Acke F, Acou M, Hemelsoet D. Basilar artery dissection. Acta Neurol Belg. 2011 Dec;111(4):376. No abstract available.

Reference Type RESULT
PMID: 22368989 (View on PubMed)

Conforto AB. Challenges in diagnosis and treatment of cervico-cephalic arterial dissections. Arq Neuropsiquiatr. 2016 Apr;74(4):273-4. doi: 10.1590/0004-282X20160039. No abstract available.

Reference Type RESULT
PMID: 27096998 (View on PubMed)

Choi JW, Han DH, Kang KD, Jung HY, Renshaw PF. Aerobic exercise and attention deficit hyperactivity disorder: brain research. Med Sci Sports Exerc. 2015 Jan;47(1):33-9. doi: 10.1249/MSS.0000000000000373.

Reference Type RESULT
PMID: 24824770 (View on PubMed)

Wang Y, Cui L, Ji X, Dong Q, Zeng J, Wang Y, Zhou Y, Zhao X, Wang C, Liu L, Nguyen-Huynh MN, Claiborne Johnston S, Wong L, Li H; China National Stroke Registry Investigators. The China National Stroke Registry for patients with acute cerebrovascular events: design, rationale, and baseline patient characteristics. Int J Stroke. 2011 Aug;6(4):355-61. doi: 10.1111/j.1747-4949.2011.00584.x. Epub 2011 Feb 17.

Reference Type RESULT
PMID: 21609414 (View on PubMed)

Bejot Y, Daubail B, Debette S, Durier J, Giroud M. Incidence and outcome of cerebrovascular events related to cervical artery dissection: the Dijon Stroke Registry. Int J Stroke. 2014 Oct;9(7):879-82. doi: 10.1111/ijs.12154. Epub 2013 Oct 22.

Reference Type RESULT
PMID: 24148660 (View on PubMed)

Kapsalaki EZ, Rountas CD, Fountas KN. The Role of 3 Tesla MRA in the Detection of Intracranial Aneurysms. Int J Vasc Med. 2012;2012:792834. doi: 10.1155/2012/792834. Epub 2012 Jan 16.

Reference Type RESULT
PMID: 22292121 (View on PubMed)

Balik V, Yamada Y, Talari S, Kei Y, Sano H, Suyama D, Kawase T, Takagi K, Takizawa K, Kato Y. State-of-art in surgical treatment of dissecting posterior circulation intracranial aneurysms. Neurosurg Rev. 2018 Jan;41(1):31-45. doi: 10.1007/s10143-016-0749-0. Epub 2016 May 24.

Reference Type RESULT
PMID: 27215913 (View on PubMed)

Darsaut TE, Findlay JM, Magro E, Kotowski M, Roy D, Weill A, Bojanowski MW, Chaalala C, Iancu D, Lesiuk H, Sinclair J, Scholtes F, Martin D, Chow MM, O'Kelly CJ, Wong JH, Butcher K, Fox AJ, Arthur AS, Guilbert F, Tian L, Chagnon M, Nolet S, Gevry G, Raymond J. Surgical clipping or endovascular coiling for unruptured intracranial aneurysms: a pragmatic randomised trial. J Neurol Neurosurg Psychiatry. 2017 Aug;88(8):663-668. doi: 10.1136/jnnp-2016-315433. Epub 2017 Jun 20.

Reference Type RESULT
PMID: 28634280 (View on PubMed)

Shi L, Xu K, Sun X, Yu J. Therapeutic Progress in Treating Vertebral Dissecting Aneurysms Involving the Posterior Inferior Cerebellar Artery. Int J Med Sci. 2016 Jun 30;13(7):540-55. doi: 10.7150/ijms.15233. eCollection 2016.

Reference Type RESULT
PMID: 27429591 (View on PubMed)

Ortiz J, Ruland S. Cervicocerebral artery dissection. Curr Opin Cardiol. 2015 Nov;30(6):603-10. doi: 10.1097/HCO.0000000000000224.

Reference Type RESULT
PMID: 26447501 (View on PubMed)

Sonmez O, Brinjikji W, Murad MH, Lanzino G. Deconstructive and Reconstructive Techniques in Treatment of Vertebrobasilar Dissecting Aneurysms: A Systematic Review and Meta-Analysis. AJNR Am J Neuroradiol. 2015 Jul;36(7):1293-8. doi: 10.3174/ajnr.A4360. Epub 2015 May 7.

Reference Type RESULT
PMID: 25953763 (View on PubMed)

Ohta H, Natarajan SK, Hauck EF, Khalessi AA, Siddiqui AH, Hopkins LN, Levy EI. Endovascular stent therapy for extracranial and intracranial carotid artery dissection: single-center experience. J Neurosurg. 2011 Jul;115(1):91-100. doi: 10.3171/2011.1.JNS091806. Epub 2011 Mar 18.

Reference Type RESULT
PMID: 21417710 (View on PubMed)

Wang Y, Zhao C, Hao X, Wang C, Wang Z. Endovascular interventional therapy and classification of vertebral artery dissecting aneurysms. Exp Ther Med. 2014 Nov;8(5):1409-1415. doi: 10.3892/etm.2014.1961. Epub 2014 Sep 12.

Reference Type RESULT
PMID: 25289031 (View on PubMed)

Park W, Ahn JS, Park JC, Kwun BD, Kim CJ. Occipital artery-posterior inferior cerebellar artery bypass for the treatment of aneurysms arising from the vertebral artery and its branches. World Neurosurg. 2014 Nov;82(5):714-21. doi: 10.1016/j.wneu.2014.06.053. Epub 2014 Jul 3.

Reference Type RESULT
PMID: 24998497 (View on PubMed)

Lylyk P, Ceratto R, Hurvitz D, Basso A. Treatment of a vertebral dissecting aneurysm with stents and coils: technical case report. Neurosurgery. 1998 Aug;43(2):385-8. doi: 10.1097/00006123-199808000-00132.

Reference Type RESULT
PMID: 9696097 (View on PubMed)

Suzuki S, Kurata A, Iwamoto K, Sato K, Niki J, Miyazaki T, Yamada M, Oka H, Fujii K, Kan S. Endovascular surgery using stents for vertebral artery dissecting aneurysms and a review of the literature. Minim Invasive Neurosurg. 2008 Aug;51(4):193-8. doi: 10.1055/s-2008-1073172.

Reference Type RESULT
PMID: 18683108 (View on PubMed)

Li H, Gao BL, Li CH, Wang JW, Liu JF, Yang ST. Endovascular Retreatment of Cerebral Aneurysms Previously Treated with Endovascular Embolization. J Neurol Surg A Cent Eur Neurosurg. 2020 May;81(3):207-212. doi: 10.1055/s-0039-1685513. Epub 2019 Nov 19.

Reference Type RESULT
PMID: 31746449 (View on PubMed)

Chalouhi N, Tjoumakaris S, Gonzalez LF, Dumont AS, Starke RM, Hasan D, Wu C, Singhal S, Moukarzel LA, Rosenwasser R, Jabbour P. Coiling of large and giant aneurysms: complications and long-term results of 334 cases. AJNR Am J Neuroradiol. 2014 Mar;35(3):546-52. doi: 10.3174/ajnr.A3696. Epub 2013 Aug 14.

Reference Type RESULT
PMID: 23945229 (View on PubMed)

Endo H, Matsumoto Y, Kondo R, Sato K, Fujimura M, Inoue T, Shimizu H, Takahashi A, Tominaga T. Medullary infarction as a poor prognostic factor after internal coil trapping of a ruptured vertebral artery dissection. J Neurosurg. 2013 Jan;118(1):131-9. doi: 10.3171/2012.9.JNS12566. Epub 2012 Oct 5.

Reference Type RESULT
PMID: 23039149 (View on PubMed)

Khattak YJ, Sibaie AA, Anwar M, Sayani R. Stents and Stent Mimickers in Endovascular Management of Wide-neck Intracranial Aneurysms. Cureus. 2018 Oct 5;10(10):e3420. doi: 10.7759/cureus.3420.

Reference Type RESULT
PMID: 30542634 (View on PubMed)

Liu J, Li X, Sun S, Wang Y, Zang P. Clinical and Angiographic Outcomes of Endovascular Treatment for Ruptured Posterior Circulation Cerebral Aneurysms. Turk Neurosurg. 2016;26(4):513-7. doi: 10.5137/1019-5149.JTN.6570-12.1.

Reference Type RESULT
PMID: 27400096 (View on PubMed)

Iannaccone Farkasova S, Sopkova D, Svajdler M Jr, Farkas D, Mistrikova L, Mezencev R. Chronic dissecting aneurysm of ascending aorta with a large intramural thrombus and isolated aortic defects. Cesk Patol. 2019 Spring;55(2):115-119.

Reference Type RESULT
PMID: 31181944 (View on PubMed)

Jin SC, Kwon DH, Choi CG, Ahn JS, Kwun BD. Endovascular strategies for vertebrobasilar dissecting aneurysms. AJNR Am J Neuroradiol. 2009 Sep;30(8):1518-23. doi: 10.3174/ajnr.A1621. Epub 2009 May 27.

Reference Type RESULT
PMID: 19474118 (View on PubMed)

Marosfoi M, Langan ET, Strittmatter L, van der Marel K, Vedantham S, Arends J, Lylyk IR, Loganathan S, Hendricks GM, Szikora I, Puri AS, Wakhloo AK, Gounis MJ. In situ tissue engineering: endothelial growth patterns as a function of flow diverter design. J Neurointerv Surg. 2017 Oct;9(10):994-998. doi: 10.1136/neurintsurg-2016-012669. Epub 2016 Oct 5.

Reference Type RESULT
PMID: 27707872 (View on PubMed)

Brinjikji W, Murad MH, Lanzino G, Cloft HJ, Kallmes DF. Endovascular treatment of intracranial aneurysms with flow diverters: a meta-analysis. Stroke. 2013 Feb;44(2):442-7. doi: 10.1161/STROKEAHA.112.678151. Epub 2013 Jan 15.

Reference Type RESULT
PMID: 23321438 (View on PubMed)

Kan P, Sweid A, Srivatsan A, Jabbour P. Expanding Indications for Flow Diverters: Ruptured Aneurysms, Blister Aneurysms, and Dissecting Aneurysms. Neurosurgery. 2020 Jan 1;86(Suppl 1):S96-S103. doi: 10.1093/neuros/nyz304.

Reference Type RESULT
PMID: 31838529 (View on PubMed)

Deng Q, Feng W, Hai H, Liu J. Evaluation of the safety and efficacy of a Pipeline Flex embolization device for treatment of large, wide-necked intracranial aneurysms. J Interv Med. 2019 Apr 30;1(4):229-233. doi: 10.19779/j.cnki.2096-3602.2018.04.06. eCollection 2018 Nov.

Reference Type RESULT
PMID: 34805855 (View on PubMed)

Adeeb N, Griessenauer CJ, Dmytriw AA, Shallwani H, Gupta R, Foreman PM, Shakir H, Moore J, Limbucci N, Mangiafico S, Kumar A, Michelozzi C, Zhang Y, Pereira VM, Matouk CC, Harrigan MR, Siddiqui AH, Levy EI, Renieri L, Marotta TR, Cognard C, Ogilvy CS, Thomas AJ. Risk of Branch Occlusion and Ischemic Complications with the Pipeline Embolization Device in the Treatment of Posterior Circulation Aneurysms. AJNR Am J Neuroradiol. 2018 Jul;39(7):1303-1309. doi: 10.3174/ajnr.A5696. Epub 2018 Jun 7.

Reference Type RESULT
PMID: 29880475 (View on PubMed)

Wang K, Tian Z, Chen J, Liu J, Wang Y, Zhang H, Wang J, Zhang Y, Yang X. Risk Factors of Recurrence after Stent(s)-Assisted Coiling of Intracranial Vertebrobasilar Dissecting Aneurysms: A Multicenter Study. Front Neurol. 2017 Sep 14;8:482. doi: 10.3389/fneur.2017.00482. eCollection 2017.

Reference Type RESULT
PMID: 28959233 (View on PubMed)

Cagnazzo F, Perrini P, Dargazanli C, Lefevre PH, Gascou G, Morganti R, di Carlo D, Derraz I, Riquelme C, Bonafe A, Costalat V. Treatment of Unruptured Distal Anterior Circulation Aneurysms with Flow-Diverter Stents: A Meta-Analysis. AJNR Am J Neuroradiol. 2019 Apr;40(4):687-693. doi: 10.3174/ajnr.A6002. Epub 2019 Mar 14.

Reference Type RESULT
PMID: 30872418 (View on PubMed)

Bender MT, Colby GP, Jiang B, Lin LM, Campos JK, Xu R, Westbroek EM, Vo CD, Zarrin DA, Caplan JM, Huang J, Tamargo RJ, Coon AL. Flow Diversion of Posterior Circulation Cerebral Aneurysms: A Single-Institution Series of 59 Cases. Neurosurgery. 2019 Jan 1;84(1):206-216. doi: 10.1093/neuros/nyy076.

Reference Type RESULT
PMID: 29608702 (View on PubMed)

Griessenauer CJ, Ogilvy CS, Adeeb N, Dmytriw AA, Foreman PM, Shallwani H, Limbucci N, Mangiafico S, Kumar A, Michelozzi C, Krings T, Pereira VM, Matouk CC, Harrigan MR, Shakir HJ, Siddiqui AH, Levy EI, Renieri L, Marotta TR, Cognard C, Thomas AJ. Pipeline embolization of posterior circulation aneurysms: a multicenter study of 131 aneurysms. J Neurosurg. 2019 Mar 1;130(3):923-935. doi: 10.3171/2017.9.JNS171376. Epub 2018 May 4.

Reference Type RESULT
PMID: 29726768 (View on PubMed)

Albuquerque FC, Park MS, Abla AA, Crowley RW, Ducruet AF, McDougall CG. A reappraisal of the Pipeline embolization device for the treatment of posterior circulation aneurysms. J Neurointerv Surg. 2015 Sep;7(9):641-5. doi: 10.1136/neurintsurg-2014-011340. Epub 2014 Aug 4.

Reference Type RESULT
PMID: 25092926 (View on PubMed)

Lopes DK, Jang DK, Cekirge S, Fiorella D, Hanel RA, Kallmes DF, Levy EI, Lylyk P. Morbidity and Mortality in Patients With Posterior Circulation Aneurysms Treated With the Pipeline Embolization Device: A Subgroup Analysis of the International Retrospective Study of the Pipeline Embolization Device. Neurosurgery. 2018 Sep 1;83(3):488-500. doi: 10.1093/neuros/nyx467.

Reference Type RESULT
PMID: 28945879 (View on PubMed)

Kuhn AL, Kan P, Massari F, Lozano JD, Hou SY, Howk M, Gounis MJ, Wakhloo AK, Puri AS. Endovascular reconstruction of unruptured intradural vertebral artery dissecting aneurysms with the Pipeline embolization device. J Neurointerv Surg. 2016 Oct;8(10):1048-51. doi: 10.1136/neurintsurg-2015-012028. Epub 2015 Nov 6.

Reference Type RESULT
PMID: 26546600 (View on PubMed)

Fischer S, Perez MA, Kurre W, Albes G, Bazner H, Henkes H. Pipeline embolization device for the treatment of intra- and extracranial fusiform and dissecting aneurysms: initial experience and long-term follow-up. Neurosurgery. 2014 Oct;75(4):364-74; discussion 374. doi: 10.1227/NEU.0000000000000431.

Reference Type RESULT
PMID: 24871140 (View on PubMed)

Corley JA, Zomorodi A, Gonzalez LF. Treatment of Dissecting Distal Vertebral Artery (V4) Aneurysms With Flow Diverters. Oper Neurosurg. 2018 Jul 1;15(1):1-9. doi: 10.1093/ons/opx180.

Reference Type RESULT
PMID: 28962011 (View on PubMed)

Tan LA, Moftakhar R, Lopes DK. Treatment of a ruptured vertebrobasilar fusiform aneurysm using pipeline embolization device. J Cerebrovasc Endovasc Neurosurg. 2013 Mar;15(1):30-3. doi: 10.7461/jcen.2013.15.1.30. Epub 2013 Mar 31.

Reference Type RESULT
PMID: 23593603 (View on PubMed)

Narata AP, Yilmaz H, Schaller K, Lovblad KO, Pereira VM. Flow-diverting stent for ruptured intracranial dissecting aneurysm of vertebral artery. Neurosurgery. 2012 Apr;70(4):982-8; discussion 988-9. doi: 10.1227/NEU.0b013e318236715e.

Reference Type RESULT
PMID: 21937937 (View on PubMed)

Guerrero WR, Ortega-Gutierrez S, Hayakawa M, Derdeyn CP, Rossen JD, Hasan D, Samaniego EA. Endovascular Treatment of Ruptured Vertebrobasilar Dissecting Aneurysms Using Flow Diversion Embolization Devices: Single-Institution Experience. World Neurosurg. 2018 Jan;109:e164-e169. doi: 10.1016/j.wneu.2017.09.125. Epub 2017 Oct 5.

Reference Type RESULT
PMID: 28987840 (View on PubMed)

Maus V, Mpotsaris A, Dorn F, Mohlenbruch M, Borggrefe J, Stavrinou P, Abdullayev N, Barnikol UB, Liebig T, Kabbasch C. The Use of Flow Diverter in Ruptured, Dissecting Intracranial Aneurysms of the Posterior Circulation. World Neurosurg. 2018 Mar;111:e424-e433. doi: 10.1016/j.wneu.2017.12.095. Epub 2017 Dec 23.

Reference Type RESULT
PMID: 29277587 (View on PubMed)

Lin N, Brouillard AM, Krishna C, Mokin M, Natarajan SK, Sonig A, Snyder KV, Levy EI, Siddiqui AH. Use of coils in conjunction with the pipeline embolization device for treatment of intracranial aneurysms. Neurosurgery. 2015 Feb;76(2):142-9. doi: 10.1227/NEU.0000000000000579.

Reference Type RESULT
PMID: 25255261 (View on PubMed)

Chong W, Zhang Y, Qian Y, Lai L, Parker G, Mitchell K. Computational hemodynamics analysis of intracranial aneurysms treated with flow diverters: correlation with clinical outcomes. AJNR Am J Neuroradiol. 2014 Jan;35(1):136-42. doi: 10.3174/ajnr.A3790. Epub 2013 Nov 28.

Reference Type RESULT
PMID: 24287091 (View on PubMed)

Zhang T, Zhong W, Zhou D, Xu Y, Li M, Zhuang J, Wang D, Su W, Wang Y. Treatment of unruptured intracranial vertebral artery dissection aneurysms with Flow Diverter compared with conventional stent-assisted coiling-a single-center study. Acta Neurochir (Wien). 2024 Dec 18;166(1):506. doi: 10.1007/s00701-024-06398-z.

Reference Type DERIVED
PMID: 39690339 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

KYLL-202306-092

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.