Improving Grasp Function in People With Sensorimotor Impairments by Combining Electrical Stimulation With a Robotic Hand Orthosis
NCT ID: NCT05976087
Last Updated: 2025-08-19
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ACTIVE_NOT_RECRUITING
NA
20 participants
INTERVENTIONAL
2023-07-01
2030-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Recognizing these limitations, our study proposes a solution that combines a standard hand soft exoskeleton with: (i) electrical stimulation to the fingers' flexor and extensor muscles to generate artificial muscle contractions synchronized with the exoskeleton motion, compensating for the lack of gripping force, and (ii) electrical stimulation to the nerves to artificially restore the lost sensation of touch, enabling users to receive feedback on the force they are applying when interacting with the environment. The investigators refer to this proposed combination as Sensible-Exo.
To achieve this goal, our project aims to evaluate the functional improvements in assistive and rehabilitative scenarios using SensoExo in comparison to use only the exoskeleton or having no support at all. The exoskeleton will be coupled with an electrical stimulating sleeve capable of delivering non-invasive electrical stimulation in the form of Functional Electrical Stimulation (FES) and Transcutaneous Electrical Nerve Stimulation (TENS). A glove with embedded force and bending sensors will be used to modulate the electrical stimulation. Additionally, apart from studying the enhancement of functional tasks, the investigators will explore improvements in body perception, representation, and multi-sensory integration. Indeed, the investigators also aim at identifying the way patients perceive their body by means of ad-hoc virtual reality assessments that has been developed. Before each assessment patient will perform some predefined movement in virtual reality to familiarize with it and increase embodiment.
During the study, participants will perform a range of tasks based on their residual abilities, including motor tasks (e.g., grab and release, Toronto Rehabilitation Institute Hand Function Test, grip force regulation test, virtual egg test), cognitive tasks (dual tasks), and assessments of body representation and perception. Some of these tasks will be conducted in Virtual Reality environments, both with and without active stimulation.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Sensory Mechanisms of Manual Dexterity Recovery After Stroke: a Prospective Cohort Study of Prediction and Cerebral Correlates
NCT07340736
Therapy to Improve Reaching Movement in Upper Limb
NCT03508037
Robotic Hand Rehabilitation
NCT05983822
Clinical Feasibility of Minimally Supervised Therapy After Stroke With a Hand Rehabilitation Robot
NCT04388891
Rehabilitation of the Stroke Hand at Home
NCT01144715
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Experimental group
SensoExo
combination of sensory feedback and the use of soft exoskeleton
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
SensoExo
combination of sensory feedback and the use of soft exoskeleton
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* The subject should have good proximal arm function (i.e. good shoulder abduction and elevation)
Exclusion Criteria
* Prior or current psychological diseases such as borderline, schizophrenia, Depression or Maniac Depression
* Major comprehension and memory deficits
* Pregnancy
* Epilepsy
* Pacemaker
* Cybersickness
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Andrea Cimolato
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Andrea Cimolato
Study coordinator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Stanisa Raspopovic, PhD
Role: PRINCIPAL_INVESTIGATOR
ETH Zurich
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Neuroengineering Lab
Zurich, Canton of Zurich, Switzerland
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Dannenbaum RM, Dykes RW. Sensory loss in the hand after sensory stroke: therapeutic rationale. Arch Phys Med Rehabil. 1988 Oct;69(10):833-9.
Carey LM, Matyas TA, Oke LE. Sensory loss in stroke patients: effective training of tactile and proprioceptive discrimination. Arch Phys Med Rehabil. 1993 Jun;74(6):602-11. doi: 10.1016/0003-9993(93)90158-7.
Finnerup NB, Johannesen IL, Fuglsang-Frederiksen A, Bach FW, Jensen TS. Sensory function in spinal cord injury patients with and without central pain. Brain. 2003 Jan;126(Pt 1):57-70. doi: 10.1093/brain/awg007.
Fujimoto ST, Longhi L, Saatman KE, Conte V, Stocchetti N, McIntosh TK. Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev. 2004 Jul;28(4):365-78. doi: 10.1016/j.neubiorev.2004.06.002.
Dannenbaum RM, Jones LA. The assessment and treatment of patients who have sensory loss following cortical lesions. J Hand Ther. 1993 Apr-Jun;6(2):130-8. doi: 10.1016/s0894-1130(12)80294-8.
Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003 Sep;34(9):2181-6. doi: 10.1161/01.STR.0000087172.16305.CD. Epub 2003 Aug 7.
Wade DT. Measuring arm impairment and disability after stroke. Int Disabil Stud. 1989 Apr-Jun;11(2):89-92. doi: 10.3109/03790798909166398.
Fuhrer MJ, Rintala DH, Hart KA, Clearman R, Young ME. Relationship of life satisfaction to impairment, disability, and handicap among persons with spinal cord injury living in the community. Arch Phys Med Rehabil. 1992 Jun;73(6):552-7.
Noreau L, Fougeyrollas P. Long-term consequences of spinal cord injury on social participation: the occurrence of handicap situations. Disabil Rehabil. 2000 Mar 10;22(4):170-80. doi: 10.1080/096382800296863.
Butzer T, Lambercy O, Arata J, Gassert R. Fully Wearable Actuated Soft Exoskeleton for Grasping Assistance in Everyday Activities. Soft Robot. 2021 Apr;8(2):128-143. doi: 10.1089/soro.2019.0135. Epub 2020 Jun 18.
Beekhuizen KS. New perspectives on improving upper extremity function after spinal cord injury. J Neurol Phys Ther. 2005 Sep;29(3):157-62. doi: 10.1097/01.npt.0000282248.15911.38.
Lambercy O, Dovat L, Yun H, Wee SK, Kuah CW, Chua KS, Gassert R, Milner TE, Teo CL, Burdet E. Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study. J Neuroeng Rehabil. 2011 Nov 16;8:63. doi: 10.1186/1743-0003-8-63.
Marquez-Chin C, Popovic MR. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review. Biomed Eng Online. 2020 May 24;19(1):34. doi: 10.1186/s12938-020-00773-4.
Ciancibello J, King K, Meghrazi MA, Padmanaban S, Levy T, Ramdeo R, Straka M, Bouton C. Closed-loop neuromuscular electrical stimulation using feedforward-feedback control and textile electrodes to regulate grasp force in quadriplegia. Bioelectron Med. 2019 Nov 1;5:19. doi: 10.1186/s42234-019-0034-y. eCollection 2019.
Prochazka A, Gauthier M, Wieler M, Kenwell Z. The bionic glove: an electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia. Arch Phys Med Rehabil. 1997 Jun;78(6):608-14. doi: 10.1016/s0003-9993(97)90426-3.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
1-010428
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.