Transcranial Direct Current Stimulation and Chronic Pain

NCT ID: NCT05863494

Last Updated: 2023-05-18

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Clinical Phase

NA

Total Enrollment

40 participants

Study Classification

INTERVENTIONAL

Study Start Date

2023-06-01

Study Completion Date

2023-10-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

This clinical trial uses transcranial direct current stimulation (tDCS) using the patented tKIWI system to safely reduce self-reported chronic pain with little to no side effects to improve our understanding and ability to accurately diagnose pain disorders which would facilitate the development of pharmacologic and non-pharmacologic treatment modalities using deep learning architecture built into the tKIWI.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Pain is a severe and growing problem in the United States with more than 116 million Americans suffering from chronic pain and more than $635 billion is spent annually on pain and its related healthcare costs. Additionally, opioid addiction has become a national crisis with nearly 50,000 deaths every year as a result of opioid-involved overdoses and nearly $78.5 billion spent annually on opioid misuse and addiction. Currently available treatments for pain, namely opioid analgesics, have limited effectiveness and can lead to a significant number of side effects and complications including dependence, pharmacodynamic tolerance, sedation, gastrointestinal issues, respiratory depression, immunosuppression, and hormonal changes. Effectively treating pain requires an accurate assessment of pain, however current methods of diagnosing and evaluating pain depend on subjective self-reporting including the use of visual and numerical pain scales. The subjective nature of describing pain makes it virtually impossible to quantify and therefore difficult to treat and monitor. To overcome this subjectivity, through a non-invasive neuromodulation technique called transcranial direct current stimulation (tDCS) and deep learning, pain can be measured objectively using electroencephalograph (EEG) to assess and personalize treatment. The overarching goal of this project is to apply transcranial direct current stimulation (tDCS) as an alternative to opioids for the reduction in chronic pain. The investigator's long-term goal is to use these data to analyze EEG signals and generate personalized tDCS treatment in real time.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Chronic Pain

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

The proposed study employs a randomized, double-blind, sham-controlled design to evaluate the effects of the tDCS using the tKIWI device on chronic pain. The participant will be randomly assigned to the treatment (tx) or sham/placebo group.

Up to 40 participants will be recruited and randomly placed in either the treatment or the sham group. The randomization ratio is 1:1. Each participant has an equal chance of being assigned to each condition and each participant will be assigned to a condition independently of the other participants. The sample is small (20 each group), so in order to ensure random assignment, we will assign a unique number to every participant of the study's sample. Then, we will use a lottery method to randomly assign each number to the control or experimental group.
Primary Study Purpose

TREATMENT

Blinding Strategy

DOUBLE

Participants Investigators
Participants will be assigned a random unique number which will be randomly correlated with either treatment group or sham group. The participant will not have access to see in the redcap system which arm they are in. The sham group will receive 1 minute from 0.0mA to no more than 0.5mA at the initiation of the treatment after which the current will be turned off. This is to maintain a blind trial. 0.5mA is negligible current but mimics treatment with an initial small tingle. The investigator who is not involved in assigning groups will receive data with de-identification.

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Treatment

For visits 1-5 (tDCS treatment visits), the investigators will start with 0.5mA ramping up to 0.75mA for 5 minutes. Followed by a brief (8 sec) EEG recording. Then, the investigators will apply .75mA to 1mA for 5 minutes. This will also be followed by 8 second EEG recording. The final application of current will be 1mA to 1.75mA for 10 minutes followed again by 8 second EEG recording.

Group Type EXPERIMENTAL

Transcranial Direct Current Stimulation (tDCS)

Intervention Type DEVICE

TDCS is a non-invasive brain stimulation that uses electrical currents to stimulate specific areas of the brain. A constant, low-intensity current passes through two to four electrodes, which can be placed on various locations on the head, to modulate neuronal activity. tDCS can administer anodal and cathodal stimulation to excite (depolarization) or inhibit (hyperpolarization) neuronal activity, respectively. Using low-amplitude direct currents applied via scalp electrodes to alter cortical excitability is not a novel concept. This non-pharmacological approach has held promise for decades as a way to treat a plethora of neurological and psychiatric disorders. Although tDCS is not currently FDA-approved it is considered a non-significant-risk therapy with no record of serious adverse effects.

Sham

For visits 1-5 (tDCS treatment visits),The sham group will receive 1 minute from 0.0mA to no more than 0.5mA at the initiation of the treatment after which the current will be turned off. They will still proceed with the full 20 minutes as does the treatment group but no current will be further applied as indicated in the treatment group. They will still receive EEG readings at the indicated 8 seconds after "current" is applied but will not receive the current. This is to maintain a blind trial. 0.5mA is negligible current but mimics treatment with an initial small tingle.

Group Type SHAM_COMPARATOR

Transcranial Direct Current Stimulation (tDCS) sham

Intervention Type DEVICE

TDCS is a non-invasive brain stimulation that uses electrical currents to stimulate specific areas of the brain. A constant, low-intensity current passes through two to four electrodes, which can be placed on various locations on the head, to modulate neuronal activity. tDCS can administer anodal and cathodal stimulation to excite (depolarization) or inhibit (hyperpolarization) neuronal activity, respectively. Using low-amplitude direct currents applied via scalp electrodes to alter cortical excitability is not a novel concept. This non-pharmacological approach has held promise for decades as a way to treat a plethora of neurological and psychiatric disorders.

The sham group will receive 1 minute from 0.0mA to no more than 0.5mA at the initiation of the treatment after which the current will be turned off. This is to maintain a blind trial. 0.5mA is negligible current, but mimics treatment with an initial small tingle.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Transcranial Direct Current Stimulation (tDCS)

TDCS is a non-invasive brain stimulation that uses electrical currents to stimulate specific areas of the brain. A constant, low-intensity current passes through two to four electrodes, which can be placed on various locations on the head, to modulate neuronal activity. tDCS can administer anodal and cathodal stimulation to excite (depolarization) or inhibit (hyperpolarization) neuronal activity, respectively. Using low-amplitude direct currents applied via scalp electrodes to alter cortical excitability is not a novel concept. This non-pharmacological approach has held promise for decades as a way to treat a plethora of neurological and psychiatric disorders. Although tDCS is not currently FDA-approved it is considered a non-significant-risk therapy with no record of serious adverse effects.

Intervention Type DEVICE

Transcranial Direct Current Stimulation (tDCS) sham

TDCS is a non-invasive brain stimulation that uses electrical currents to stimulate specific areas of the brain. A constant, low-intensity current passes through two to four electrodes, which can be placed on various locations on the head, to modulate neuronal activity. tDCS can administer anodal and cathodal stimulation to excite (depolarization) or inhibit (hyperpolarization) neuronal activity, respectively. Using low-amplitude direct currents applied via scalp electrodes to alter cortical excitability is not a novel concept. This non-pharmacological approach has held promise for decades as a way to treat a plethora of neurological and psychiatric disorders.

The sham group will receive 1 minute from 0.0mA to no more than 0.5mA at the initiation of the treatment after which the current will be turned off. This is to maintain a blind trial. 0.5mA is negligible current, but mimics treatment with an initial small tingle.

Intervention Type DEVICE

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

tKIWI ni2o

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Age: 18-79 years old
* Gender: Any
* Ethnicity: Any
* Chronic pain (\> 3-months); No current use of nonprescription opioids (\< 1 month); Able and willing to comply with scheduled visits and other study-related procedures to complete the study; Willing and able to give informed consent.

Exclusion Criteria

* Diagnosis (as defined by DSM-IV) of: any psychotic disorder (lifetime); eating disorder (current or within the past year); obsessive compulsive disorder (lifetime)); mental retardation.
* History of drug or alcohol abuse or dependence (as per DSM-IV criteria) within the last 3 months (except nicotine and caffeine).
* Subject is on regular benzodiazepine medication which it is not clinically appropriate to discontinue.
* Subject requires a rapid clinical response due to inanition, psychosis or high suicide risk.
* Neurological disorder or insult, e.g., recent stroke (CVA), which places subject at risk of seizure or neuronal damage with tDCS.
* Subject has metal in the cranium, skull defects, or skin lesions on scalp (cuts, abrasions, rash) at proposed electrode sites.
* Female subject who is pregnant.
* Participants who are not fluent in English will not be included in the trial for safety reasons: a) It is usually not possible to have an interpreter reliably available every weekday for up to 4 weeks and it is not safe to give tDCS to a subject who cannot tell us immediately of any side effects; Note that translation of the proposed ACT activity into English has not been validated and that we cannot be confident that they would be accurately translated and validated.
* Minors
* Older than 79 years old
* last use \>24 months
* history of EEG or any electrical implant (i.e. pacemaker)
* history of Parkinson's, diagnosis of bipolar, schizophrenia/schizo-affective d/o, OCD, epilepsy, alzheimers
* taking antipsychotic drugs
Minimum Eligible Age

18 Years

Maximum Eligible Age

79 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

ni20

UNKNOWN

Sponsor Role collaborator

University of Arizona

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Allison J Huff Macpherson

Assistant Professor, Family and Community Medicine

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Allison J Huff, DHEd

Role: PRINCIPAL_INVESTIGATOR

University of Arizona

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of Arizona

Tucson, Arizona, United States

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

United States

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Allison J Huff, DHEd

Role: CONTACT

(520) 626-4839

Leena Idris, BS

Role: CONTACT

(520) 2474415

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Allison J Huff, DHEd

Role: primary

520-626-4839

Leena Idris, BS

Role: backup

(520)247-4415

References

Explore related publications, articles, or registry entries linked to this study.

Institute of Medicine (US) Committee on Advancing Pain Research, Care, and Education. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research. Washington (DC): National Academies Press (US); 2011. Available from http://www.ncbi.nlm.nih.gov/books/NBK91497/

Reference Type RESULT
PMID: 22553896 (View on PubMed)

National Institute on Drug Abuse. Overdose Death Rates. 29 Jan 2021 [cited 12 May 2021]. Available: https://www.drugabuse.gov/drug-topics/trends-statistics/overdose-death-rates

Reference Type RESULT

Florence CS, Zhou C, Luo F, Xu L. The Economic Burden of Prescription Opioid Overdose, Abuse, and Dependence in the United States, 2013. Med Care. 2016 Oct;54(10):901-6. doi: 10.1097/MLR.0000000000000625.

Reference Type RESULT
PMID: 27623005 (View on PubMed)

Hedegaard H, Minino AM, Warner M. Urban-rural Differences in Drug Overdose Death Rates, by Sex, Age, and Type of Drugs Involved, 2017. NCHS Data Brief. 2019 Aug;(345):1-8.

Reference Type RESULT
PMID: 31442197 (View on PubMed)

Porreca F, Ossipov MH. Nausea and vomiting side effects with opioid analgesics during treatment of chronic pain: mechanisms, implications, and management options. Pain Med. 2009 May-Jun;10(4):654-62. doi: 10.1111/j.1526-4637.2009.00583.x. Epub 2009 Mar 19.

Reference Type RESULT
PMID: 19302436 (View on PubMed)

Benyamin R, Trescot AM, Datta S, Buenaventura R, Adlaka R, Sehgal N, Glaser SE, Vallejo R. Opioid complications and side effects. Pain Physician. 2008 Mar;11(2 Suppl):S105-20.

Reference Type RESULT
PMID: 18443635 (View on PubMed)

Crofford LJ. Chronic Pain: Where the Body Meets the Brain. Trans Am Clin Climatol Assoc. 2015;126:167-83.

Reference Type RESULT
PMID: 26330672 (View on PubMed)

Yang S, Chang MC. Chronic Pain: Structural and Functional Changes in Brain Structures and Associated Negative Affective States. Int J Mol Sci. 2019 Jun 26;20(13):3130. doi: 10.3390/ijms20133130.

Reference Type RESULT
PMID: 31248061 (View on PubMed)

Kim D, Chae Y, Park HJ, Lee IS. Effects of Chronic Pain Treatment on Altered Functional and Metabolic Activities in the Brain: A Systematic Review and Meta-Analysis of Functional Neuroimaging Studies. Front Neurosci. 2021 Jul 5;15:684926. doi: 10.3389/fnins.2021.684926. eCollection 2021.

Reference Type RESULT
PMID: 34290582 (View on PubMed)

Baliki MN, Geha PY, Apkarian AV, Chialvo DR. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci. 2008 Feb 6;28(6):1398-403. doi: 10.1523/JNEUROSCI.4123-07.2008.

Reference Type RESULT
PMID: 18256259 (View on PubMed)

de Williams AC, Davies HTO, Chadury Y. Simple pain rating scales hide complex idiosyncratic meanings. Pain. 2000 Apr;85(3):457-463. doi: 10.1016/S0304-3959(99)00299-7.

Reference Type RESULT
PMID: 10781919 (View on PubMed)

McGovern MP, Carroll KM. Evidence-based practices for substance use disorders. Psychiatr Clin North Am. 2003 Dec;26(4):991-1010. doi: 10.1016/s0193-953x(03)00073-x.

Reference Type RESULT
PMID: 14711132 (View on PubMed)

Reese ED, Kane LF, Paquette CE, Frohlich F, Daughters SB. Lost in Translation: the Gap Between Neurobiological Mechanisms and Psychosocial Treatment Research for Substance Use Disorders. Curr Addict Rep. 2021 Sep;8(3):440-451. doi: 10.1007/s40429-021-00382-8. Epub 2021 Jul 7.

Reference Type RESULT
PMID: 40406375 (View on PubMed)

van der Stel J. Precision in Addiction Care: Does It Make a Difference? Yale J Biol Med. 2015 Nov 24;88(4):415-22. eCollection 2015 Dec.

Reference Type RESULT
PMID: 26604867 (View on PubMed)

Vanderah TW, Suenaga NM, Ossipov MH, Malan TP Jr, Lai J, Porreca F. Tonic descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance. J Neurosci. 2001 Jan 1;21(1):279-86. doi: 10.1523/JNEUROSCI.21-01-00279.2001.

Reference Type RESULT
PMID: 11150345 (View on PubMed)

Gardell LR, Wang R, Burgess SE, Ossipov MH, Vanderah TW, Malan TP Jr, Lai J, Porreca F. Sustained morphine exposure induces a spinal dynorphin-dependent enhancement of excitatory transmitter release from primary afferent fibers. J Neurosci. 2002 Aug 1;22(15):6747-55. doi: 10.1523/JNEUROSCI.22-15-06747.2002.

Reference Type RESULT
PMID: 12151554 (View on PubMed)

O'Connor P, Bisson J, Asplin P, Gahir D. Retrospective analysis of self-reporting pain scores and pain management during head and neck IMRT radiotherapy: A single institution experience. Radiography (Lond). 2017 May;23(2):103-106. doi: 10.1016/j.radi.2017.02.003. Epub 2017 Feb 21.

Reference Type RESULT
PMID: 28390539 (View on PubMed)

Turk DC, Okifuji A. Assessment of patients' reporting of pain: an integrated perspective. Lancet. 1999 May 22;353(9166):1784-8. doi: 10.1016/S0140-6736(99)01309-4.

Reference Type RESULT
PMID: 10348007 (View on PubMed)

Dworkin RH, O'Connor AB, Backonja M, Farrar JT, Finnerup NB, Jensen TS, Kalso EA, Loeser JD, Miaskowski C, Nurmikko TJ, Portenoy RK, Rice ASC, Stacey BR, Treede RD, Turk DC, Wallace MS. Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain. 2007 Dec 5;132(3):237-251. doi: 10.1016/j.pain.2007.08.033. Epub 2007 Oct 24.

Reference Type RESULT
PMID: 17920770 (View on PubMed)

Whitten CE, Donovan M, Cristobal K. Treating chronic pain: new knowledge, more choices. Perm J. 2005 Fall;9(4):9-18. doi: 10.7812/TPP/05-067. No abstract available.

Reference Type RESULT
PMID: 22811639 (View on PubMed)

Pinto CB, Teixeira Costa B, Duarte D, Fregni F. Transcranial Direct Current Stimulation as a Therapeutic Tool for Chronic Pain. J ECT. 2018 Sep;34(3):e36-e50. doi: 10.1097/YCT.0000000000000518.

Reference Type RESULT
PMID: 29952860 (View on PubMed)

Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009 Sep;10(9):895-926. doi: 10.1016/j.jpain.2009.06.012.

Reference Type RESULT
PMID: 19712899 (View on PubMed)

Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011 Mar;152(3 Suppl):S2-S15. doi: 10.1016/j.pain.2010.09.030. Epub 2010 Oct 18.

Reference Type RESULT
PMID: 20961685 (View on PubMed)

Mari T, Henderson J, Maden M, Nevitt S, Duarte R, Fallon N. Systematic Review of the Effectiveness of Machine Learning Algorithms for Classifying Pain Intensity, Phenotype or Treatment Outcomes Using Electroencephalogram Data. J Pain. 2022 Mar;23(3):349-369. doi: 10.1016/j.jpain.2021.07.011. Epub 2021 Aug 21.

Reference Type RESULT
PMID: 34425248 (View on PubMed)

Nitsche MA, Boggio PS, Fregni F, Pascual-Leone A. Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp Neurol. 2009 Sep;219(1):14-9. doi: 10.1016/j.expneurol.2009.03.038. Epub 2009 Apr 5.

Reference Type RESULT
PMID: 19348793 (View on PubMed)

Suen PJC, Doll S, Batistuzzo MC, Busatto G, Razza LB, Padberg F, Mezger E, Bulubas L, Keeser D, Deng ZD, Brunoni AR. Association between tDCS computational modeling and clinical outcomes in depression: data from the ELECT-TDCS trial. Eur Arch Psychiatry Clin Neurosci. 2021 Feb;271(1):101-110. doi: 10.1007/s00406-020-01127-w. Epub 2020 Apr 11.

Reference Type RESULT
PMID: 32279145 (View on PubMed)

d'Urso G, dell'Osso B, Ferrucci R, Bortolomasi M, Bruzzese D, Giacopuzzi M, et al. P 255. Transcranial direct current stimulation (tDCS) for the treatment of major depression: A pooled analysis from the Italian tDCS collaborative group. Clinical Neurophysiology. 2013. p. e185. doi:10.1016/j.clinph.2013.04.330

Reference Type RESULT

Fregni F, Boggio PS, Nitsche MA, Marcolin MA, Rigonatti SP, Pascual-Leone A. Treatment of major depression with transcranial direct current stimulation. Bipolar Disord. 2006 Apr;8(2):203-4. doi: 10.1111/j.1399-5618.2006.00291.x. No abstract available.

Reference Type RESULT
PMID: 16542193 (View on PubMed)

Kalu UG, Sexton CE, Loo CK, Ebmeier KP. Transcranial direct current stimulation in the treatment of major depression: a meta-analysis. Psychol Med. 2012 Sep;42(9):1791-800. doi: 10.1017/S0033291711003059. Epub 2012 Jan 12.

Reference Type RESULT
PMID: 22236735 (View on PubMed)

Donde C, Amad A, Nieto I, Brunoni AR, Neufeld NH, Bellivier F, Poulet E, Geoffroy PA. Transcranial direct-current stimulation (tDCS) for bipolar depression: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2017 Aug 1;78:123-131. doi: 10.1016/j.pnpbp.2017.05.021. Epub 2017 May 25.

Reference Type RESULT
PMID: 28552295 (View on PubMed)

McClintock SM, Martin DM, Lisanby SH, Alonzo A, McDonald WM, Aaronson ST, Husain MM, O'Reardon JP, Weickert CS, Mohan A, Loo CK. Neurocognitive effects of transcranial direct current stimulation (tDCS) in unipolar and bipolar depression: Findings from an international randomized controlled trial. Depress Anxiety. 2020 Mar;37(3):261-272. doi: 10.1002/da.22988. Epub 2020 Jan 16.

Reference Type RESULT
PMID: 31944487 (View on PubMed)

Garcia S, Nalven M, Ault A, Eskenazi MA. tDCS as a treatment for anxiety and related cognitive deficits. Int J Psychophysiol. 2020 Dec;158:172-177. doi: 10.1016/j.ijpsycho.2020.10.006. Epub 2020 Oct 28.

Reference Type RESULT
PMID: 33129848 (View on PubMed)

Shiozawa P, Leiva AP, Castro CD, da Silva ME, Cordeiro Q, Fregni F, Brunoni AR. Transcranial direct current stimulation for generalized anxiety disorder: a case study. Biol Psychiatry. 2014 Jun 1;75(11):e17-8. doi: 10.1016/j.biopsych.2013.07.014. Epub 2013 Aug 16. No abstract available.

Reference Type RESULT
PMID: 23958182 (View on PubMed)

Biundo R, Weis L, Fiorenzato E, Gentile G, Giglio M, Schifano R, Campo MC, Marcon V, Martinez-Martin P, Bisiacchi P, Antonini A. Double-blind Randomized Trial of tDCS Versus Sham in Parkinson Patients With Mild Cognitive Impairment Receiving Cognitive Training. Brain Stimul. 2015 Nov-Dec;8(6):1223-5. doi: 10.1016/j.brs.2015.07.043. Epub 2015 Aug 6. No abstract available.

Reference Type RESULT
PMID: 26319357 (View on PubMed)

Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, Silva MT, Barbosa ER, Nitsche MA, Pascual-Leone A. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease. Mov Disord. 2006 Oct;21(10):1693-702. doi: 10.1002/mds.21012.

Reference Type RESULT
PMID: 16817194 (View on PubMed)

Zaninotto AL, El-Hagrassy MM, Green JR, Babo M, Paglioni VM, Benute GG, Paiva WS. Transcranial direct current stimulation (tDCS) effects on traumatic brain injury (TBI) recovery: A systematic review. Dement Neuropsychol. 2019 Apr-Jun;13(2):172-179. doi: 10.1590/1980-57642018dn13-020005.

Reference Type RESULT
PMID: 31285791 (View on PubMed)

Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Bernabeu M, Tormos JM, Pascual-Leone A. Noninvasive brain stimulation in traumatic brain injury. J Head Trauma Rehabil. 2012 Jul-Aug;27(4):274-92. doi: 10.1097/HTR.0b013e318217df55.

Reference Type RESULT
PMID: 21691215 (View on PubMed)

Salehinejad MA, Ghayerin E, Nejati V, Yavari F, Nitsche MA. Domain-specific Involvement of the Right Posterior Parietal Cortex in Attention Network and Attentional Control of ADHD: A Randomized, Cross-over, Sham-controlled tDCS Study. Neuroscience. 2020 Sep 15;444:149-159. doi: 10.1016/j.neuroscience.2020.07.037. Epub 2020 Jul 28.

Reference Type RESULT
PMID: 32730946 (View on PubMed)

Siniatchkin M. Anodal tDCS over the left DLPFC improved working memory and reduces symptoms in children with ADHD. Brain Stimulation. 2017. p. 517. doi:10.1016/j.brs.2017.01.509

Reference Type RESULT

Baker JM, Rorden C, Fridriksson J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke. 2010 Jun;41(6):1229-36. doi: 10.1161/STROKEAHA.109.576785. Epub 2010 Apr 15.

Reference Type RESULT
PMID: 20395612 (View on PubMed)

Kim DY, Ohn SH, Yang EJ, Park CI, Jung KJ. Enhancing motor performance by anodal transcranial direct current stimulation in subacute stroke patients. Am J Phys Med Rehabil. 2009 Oct;88(10):829-36. doi: 10.1097/PHM.0b013e3181b811e3.

Reference Type RESULT
PMID: 21119316 (View on PubMed)

Volz MS, Farmer A, Siegmund B. Reduction of chronic abdominal pain in patients with inflammatory bowel disease through transcranial direct current stimulation: a randomized controlled trial. Pain. 2016 Feb;157(2):429-437. doi: 10.1097/j.pain.0000000000000386.

Reference Type RESULT
PMID: 26469395 (View on PubMed)

DosSantos MF, Love TM, Martikainen IK, Nascimento TD, Fregni F, Cummiford C, Deboer MD, Zubieta JK, Dasilva AF. Immediate effects of tDCS on the mu-opioid system of a chronic pain patient. Front Psychiatry. 2012 Nov 2;3:93. doi: 10.3389/fpsyt.2012.00093. eCollection 2012.

Reference Type RESULT
PMID: 23130002 (View on PubMed)

Garcia-Larrea L. tDCS as a procedure for chronic pain relief. Neurophysiologie Clinique/Clinical Neurophysiology. 2016. p. 224. doi:10.1016/j.neucli.2016.06.018

Reference Type RESULT

Ayache SS, Palm U, Chalah MA, Al-Ani T, Brignol A, Abdellaoui M, Dimitri D, Sorel M, Creange A, Lefaucheur JP. Prefrontal tDCS Decreases Pain in Patients with Multiple Sclerosis. Front Neurosci. 2016 Apr 8;10:147. doi: 10.3389/fnins.2016.00147. eCollection 2016.

Reference Type RESULT
PMID: 27092048 (View on PubMed)

Research CM, Case Medical Research. Management of Chronic Pain and PTSD in Gulf War Veterans With tDCS Prolonged Exposure. Case Medical Research. 2020. doi:10.31525/ct1-nct04236284

Reference Type RESULT

Fricova J, Rokyta R. Transcranial Neurostimulation (rTMS, tDCS) in the Treatment of Chronic Orofacial Pain. Prog Neurol Surg. 2020;35:125-132. doi: 10.1159/000511134. Epub 2020 Oct 12.

Reference Type RESULT
PMID: 33045706 (View on PubMed)

Mitra S, Mehta UM, Binukumar B, Venkatasubramanian G, Thirthalli J. Statistical power estimation in non-invasive brain stimulation studies and its clinical implications: An exploratory study of the meta-analyses. Asian J Psychiatr. 2019 Aug;44:29-34. doi: 10.1016/j.ajp.2019.07.006. Epub 2019 Jul 5.

Reference Type RESULT
PMID: 31302440 (View on PubMed)

Fregni F, Boggio PS, Lima MC, Ferreira MJ, Wagner T, Rigonatti SP, Castro AW, Souza DR, Riberto M, Freedman SD, Nitsche MA, Pascual-Leone A. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain. 2006 May;122(1-2):197-209. doi: 10.1016/j.pain.2006.02.023. Epub 2006 Mar 27.

Reference Type RESULT
PMID: 16564618 (View on PubMed)

Lefaucheur JP, Antal A, Ahdab R, Ciampi de Andrade D, Fregni F, Khedr EM, Nitsche M, Paulus W. The use of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) to relieve pain. Brain Stimul. 2008 Oct;1(4):337-44. doi: 10.1016/j.brs.2008.07.003. Epub 2008 Oct 7.

Reference Type RESULT
PMID: 20633392 (View on PubMed)

Khedr EM, Sharkawy ESA, Attia AMA, Ibrahim Osman NM, Sayed ZM. Role of transcranial direct current stimulation on reduction of postsurgical opioid consumption and pain in total knee arthroplasty: Double randomized clinical trial. Eur J Pain. 2017 Sep;21(8):1355-1365. doi: 10.1002/ejp.1034. Epub 2017 Apr 25.

Reference Type RESULT
PMID: 28440034 (View on PubMed)

Borckardt JJ, Reeves ST, Robinson SM, May JT, Epperson TI, Gunselman RJ, Schutte HD, Demos HA, Madan A, Fredrich S, George MS. Transcranial direct current stimulation (tDCS) reduces postsurgical opioid consumption in total knee arthroplasty (TKA). Clin J Pain. 2013 Nov;29(11):925-8. doi: 10.1097/AJP.0b013e31827e32be.

Reference Type RESULT
PMID: 23370085 (View on PubMed)

Fregni F, Nitsche MA, Loo CK, Brunoni AR, Marangolo P, Leite J, Carvalho S, Bolognini N, Caumo W, Paik NJ, Simis M, Ueda K, Ekhitari H, Luu P, Tucker DM, Tyler WJ, Brunelin J, Datta A, Juan CH, Venkatasubramanian G, Boggio PS, Bikson M. Regulatory Considerations for the Clinical and Research Use of Transcranial Direct Current Stimulation (tDCS): review and recommendations from an expert panel. Clin Res Regul Aff. 2015 Mar 1;32(1):22-35. doi: 10.3109/10601333.2015.980944.

Reference Type RESULT
PMID: 25983531 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Document Type: Informed Consent Form

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

STUDY00001896

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.