Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
30 participants
INTERVENTIONAL
2023-06-01
2023-10-11
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Neuromodulation has shown promise to stimulate neuronal growth without any of the side effects of medications or electroconvulsive therapy. Using transcranial direct current stimulation (tDCS) to modulate cortical activity has shown to be a viable therapy in medicine-resistant depression, to reduce opioid cravings, and impulse control.
The proposed research plans to recruit 30 subjects with a history of substance use disorder (SUD). This may include a history of addiction to opioids, cocaine, and barbiturates. Addiction to alcohol and cannabinoids (marijuana) will be excluded from this study. Following recruitment and consent, the subject will be administered an EEG, Acceptance Commitment Therapy exercise followed by EEG, and a BIS-11 Survey measuring levels of impulsivity. During the next week, the patient will undergo 5 visits consisting of a pre-EEG, tDCS, and post-EEG. Half of the subjects (n=15) will receive treatment, while the other half will be in a sham group. After the completion of the 5 tDCS visits, the patient will again be administered an EEG, ACT exercise followed by EEG, and a final BIS-11 survey measuring for end impulsivity levels.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Mindfulness-Based Intervention and Transcranial Direct Current Brain Stimulation to Reduce Heavy Drinking
NCT02861807
Relapse Prevention in Alcohol Dependency by Transcranial Direct Current Stimulation Supported Cue Exposure Therapy
NCT02228486
Towards a Targeted Ultrasound Neuromodulation Intervention for Alcohol Abuse Disorders
NCT06894966
Improving Sleep to Reduce Risk for Substance Use Disorder
NCT03226132
Examining Feasibility and Acceptability of Telemedicine for Substance Use Disorder (SUD)
NCT04768920
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Aim 1 will establish the extent of change to brain waves during tDCS+ACT treatment sessions in both arms while also performing the stop signal task. This aim will be achieved by capturing baseline EEG readings of the entire brain for subjects in both arms and also capturing EEG readings during the treatment phase and at the final study visit 1-week post and comparing between and within results.
Aim 2 will determine whether a change to self-reported impulsiveness occurs as a result of tDCS or tDCS and ACT exercise accompanied by the stop signal task. The investigators will achieve this aim by comparing the baseline Barratt Impulsiveness Scale (BIS-11) survey results of subjects in treatment and placebo arms to BIS-11 survey results on the final day of the 5 days of treatment and one week later, enabling investigators to determine any short-term change or durable change to impulsivity.
Aim 3 will measure whether the tDCS system, tKIWI, results in any unwanted side effects or adverse events. The investigators will achieve this aim by monitoring subjects' vitals during the entire session and evaluating results of a questionnaire after each treatment session and after the final study visit, enabling us to capture reported discomfort.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
FACTORIAL
Both the treatment and sham groups will participate in the ACT activity and the stop signal task which is administered at baseline and the final visit, but only the treatment group will receive tDCS.
TREATMENT
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Treatment
The anode and cathode are two large 5 cm by 5 cm gel-based pads which are placed on the scalp. Current that flows from the cathode to the anode has an inhibitory effect on the stimulated area, while current that flows from the anode to the cathode is typically excitatory.
In order to help minimize the stinging feel of the treatment, we have chosen to ramp up time and frequency. For visits 2-6 (tDCS treatment visits), we will start with 0.5mA ramping up to 0.75mA for 5 minutes. Followed by a brief (8 sec) EEG recording. Then, we will apply 0.75mA to 1mA while watching the ACT video for 5 minutes. This will also be followed by 8 second EEG recording. The final application of current will be 1.0mA to 1.75mA for 10 minutes followed again by 8 second EEG recording.
tDCS
EEG: The tKIWI uses sensors placed on specific locations of the head for the EEG reading.
tDCS: The anode and cathode are two large 5 cm by 5 cm gel-based pads which are placed on the scalp. This reduces the risk of burn or irritation and increases conduction. The 2 electrodes are connected to the tKIWI device which delivers a low intensity electrical current (\</=2A), thereby polarizing membrane potential of neurons in the stimulated area. Current that flows from the cathode to the anode has an inhibitory effect on the stimulated area, while current that flows from the anode to the cathode is typically excitatory. We will be initiating bilateral stimulation of the Dorsolateral pre-frontal cortex (DLPFC), which has been shown in the literature to elicit a significant decrease in ambiguous risk-taking behavior in healthy human subjects and a decrease in impulsivity on a non-ambiguous risk task.
Sham
The sham group will receive ramped up current from 0.0mA not to exceed 0.5mA for the first minute at the initiation of each of the three "ramp-ups," after which the current will be turned off. This is to maintain a blind trial. 0.5mA is negligible current but mimics treatment with an initial small tingle. The current delivered by tDCS is not strong enough to trigger an action potential in a neuron; instead its "sub-threshold" changes the pattern of already active neurons.
tDCS Sham
EEG: The tKIWI uses sensors placed on specific locations of the head for the EEG reading.
The sham group will receive ramped up current from 0.0mA to no more than 0.5mA for the first minute at the initiation of each of the three "ramp ups," after which the current will be turned off. This is to maintain a blind trial. 0.5mA is negligible current, but mimics treatment with an initial small tingle. The current delivered by tDCS is not strong enough to trigger an action potential in a neuron; instead its "sub-threshold" changes the pattern of already active neurons.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
tDCS
EEG: The tKIWI uses sensors placed on specific locations of the head for the EEG reading.
tDCS: The anode and cathode are two large 5 cm by 5 cm gel-based pads which are placed on the scalp. This reduces the risk of burn or irritation and increases conduction. The 2 electrodes are connected to the tKIWI device which delivers a low intensity electrical current (\</=2A), thereby polarizing membrane potential of neurons in the stimulated area. Current that flows from the cathode to the anode has an inhibitory effect on the stimulated area, while current that flows from the anode to the cathode is typically excitatory. We will be initiating bilateral stimulation of the Dorsolateral pre-frontal cortex (DLPFC), which has been shown in the literature to elicit a significant decrease in ambiguous risk-taking behavior in healthy human subjects and a decrease in impulsivity on a non-ambiguous risk task.
tDCS Sham
EEG: The tKIWI uses sensors placed on specific locations of the head for the EEG reading.
The sham group will receive ramped up current from 0.0mA to no more than 0.5mA for the first minute at the initiation of each of the three "ramp ups," after which the current will be turned off. This is to maintain a blind trial. 0.5mA is negligible current, but mimics treatment with an initial small tingle. The current delivered by tDCS is not strong enough to trigger an action potential in a neuron; instead its "sub-threshold" changes the pattern of already active neurons.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Gender: Any
* Ethnicity: Any
* Diagnosis of substance use disorder and a recent history of substance use (\<24 months last use), but not currently reporting use.
Exclusion Criteria
* History of drug or alcohol abuse or dependence (as per DSM-IV criteria) within the last 3 months (except nicotine and caffeine).
* Subject is on regular benzodiazepine medication which it is not clinically appropriate to discontinue.
* Subject requires a rapid clinical response due to inanition, psychosis or high suicide risk.
* Neurological disorder or insult, e.g., recent stroke (CVA), which places subject at risk of seizure or neuronal damage with tDCS.
* Subject has metal in the cranium, skull defects, or skin lesions on scalp (cuts, abrasions, rash) at proposed electrode sites.
* Female subject who is pregnant.
* Participants who are not fluent in English will not be included in the trial for safety reasons: a) It is usually not possible to have an interpreter reliably available every weekday for up to 4 weeks and it is not safe to give tDCS to a subject who cannot tell us immediately of any side effects; Note that translation of the proposed ACT activity into English has not been validated and that we cannot be confident that they would be accurately translated and validated.
* Minors
* Older than 79 years old
* last use \>24 months
* history of EEG or any electrical implant (i.e. pacemaker)
* history of Parkinson's, diagnosis of bipolar, schizophrenia/schizo-affective d/o, OCD, epilepsy, alzheimers
* primary drug of choice alcohol or marijuana
* taking antipsychotic drugs
18 Years
79 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Arizona
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Allison J Huff Macpherson
Assistant Professor, Family and Community Medicine
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Allison J Huff, DHEd
Role: PRINCIPAL_INVESTIGATOR
University of Arizona
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Allison J. Huff
Tucson, Arizona, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Johnston LD, Miech RA, O'Malley PM, Bachman JG, Schulenberg JE, Patrick ME. Monitoring the Future National Survey Results on Drug Use, 1975-2020: Overview, Key Findings on Adolescent Drug Use. Institute for Social Research 2021
Drug Overdose Deaths: Drug Overdose Deaths Remain High: Centers for Disease Control and Prevention, 2019.
NIDA. 2020 JCJDRfhwdgpdc-jo, November 10. Criminal Justice DrugFacts: NIDA, 2020. 4. Painter JM, Malte CA, Rubinsky AD, et al. High inpatient utilization among Veterans Health
Painter JM, Malte CA, Rubinsky AD, Campellone TR, Gilmore AK, Baer JS, Hawkins EJ. High inpatient utilization among Veterans Health Administration patients with substance-use disorders and co-occurring mental health conditions. Am J Drug Alcohol Abuse. 2018;44(3):386-394. doi: 10.1080/00952990.2017.1381701. Epub 2017 Nov 2.
Holtzheimer PE, Mayberg HS. Neuromodulation for treatment-resistant depression. F1000 Med Rep. 2012;4:22. doi: 10.3410/M4-22. Epub 2012 Nov 1.
Arns M, Swatzyna RJ, Gunkelman J, Olbrich S. Sleep maintenance, spindling excessive beta and impulse control: an RDoC arousal and regulatory systems approach? Neuropsychiatric Electrophysiology 2015;1(1):5 doi: 10.1186/s40810-015-0005-9[published Online First: Epub Date]|.
Chen J, Qin J, He Q, Zou Z. A Meta-Analysis of Transcranial Direct Current Stimulation on Substance and Food Craving: What Effect Do Modulators Have? Front Psychiatry. 2020 Jun 26;11:598. doi: 10.3389/fpsyt.2020.00598. eCollection 2020.
Coles AS, Kozak K, George TP. A review of brain stimulation methods to treat substance use disorders. Am J Addict. 2018 Mar;27(2):71-91. doi: 10.1111/ajad.12674. Epub 2018 Feb 19.
Gilmore CS, Dickmann PJ, Nelson BG, Lamberty GJ, Lim KO. Transcranial Direct Current Stimulation (tDCS) paired with a decision-making task reduces risk-taking in a clinically impulsive sample. Brain Stimul. 2018 Mar-Apr;11(2):302-309. doi: 10.1016/j.brs.2017.11.011. Epub 2017 Nov 22.
Kwon YH, Kang KW, Lee NK, Son SM. Does hemispheric lateralization influence therapeutic effects of transcranial direct current stimulation? Neural Regen Res. 2016 Jan;11(1):126-9. doi: 10.4103/1673-5374.175057.
Lapenta OM, Marques LM, Rego GG, Comfort WE, Boggio PS. tDCS in Addiction and Impulse Control Disorders. J ECT. 2018 Sep;34(3):182-192. doi: 10.1097/YCT.0000000000000541.
Wang TR, Moosa S, Dallapiazza RF, Elias WJ, Lynch WJ. Deep brain stimulation for the treatment of drug addiction. Neurosurg Focus. 2018 Aug;45(2):E11. doi: 10.3171/2018.5.FOCUS18163.
McGovern MP, Carroll KM. Evidence-based practices for substance use disorders. Psychiatr Clin North Am. 2003 Dec;26(4):991-1010. doi: 10.1016/s0193-953x(03)00073-x.
Reese ED, Kane LF, Paquette CE, Frohlich F, Daughters SB. Lost in Translation: the Gap Between Neurobiological Mechanisms and Psychosocial Treatment Research for Substance Use Disorders. Curr Addict Rep. 2021 Sep;8(3):440-451. doi: 10.1007/s40429-021-00382-8. Epub 2021 Jul 7.
van der Stel J. Precision in Addiction Care: Does It Make a Difference? Yale J Biol Med. 2015 Nov 24;88(4):415-22. eCollection 2015 Dec.
Antal A, Alekseichuk I, Bikson M, Brockmoller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Floel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017 Sep;128(9):1774-1809. doi: 10.1016/j.clinph.2017.06.001. Epub 2017 Jun 19.
Lupi M, Martinotti G, Santacroce R, Cinosi E, Carlucci M, Marini S, Acciavatti T, di Giannantonio M. Transcranial Direct Current Stimulation in Substance Use Disorders: A Systematic Review of Scientific Literature. J ECT. 2017 Sep;33(3):203-209. doi: 10.1097/YCT.0000000000000401.
Matsumoto H, Ugawa Y. Adverse events of tDCS and tACS: A review. Clin Neurophysiol Pract. 2016 Dec 21;2:19-25. doi: 10.1016/j.cnp.2016.12.003. eCollection 2017.
Lu S. Tailoring treatment by scanning the brain. Monitor on Psychology 2016;47[3]
Cho SS, Ko JH, Pellecchia G, Van Eimeren T, Cilia R, Strafella AP. Continuous theta burst stimulation of right dorsolateral prefrontal cortex induces changes in impulsivity level. Brain Stimul. 2010 Jul;3(3):170-6. doi: 10.1016/j.brs.2009.10.002. Epub 2009 Oct 31.
Weygandt M, Mai K, Dommes E, Ritter K, Leupelt V, Spranger J, Haynes JD. Impulse control in the dorsolateral prefrontal cortex counteracts post-diet weight regain in obesity. Neuroimage. 2015 Apr 1;109:318-27. doi: 10.1016/j.neuroimage.2014.12.073. Epub 2015 Jan 7.
Lee EB, An W, Levin ME, Twohig MP. An initial meta-analysis of Acceptance and Commitment Therapy for treating substance use disorders. Drug Alcohol Depend. 2015 Oct 1;155:1-7. doi: 10.1016/j.drugalcdep.2015.08.004. Epub 2015 Aug 13.
Morrison KL, Madden GJ, Odum AL, Friedel JE, Twohig MP. Altering impulsive decision making with an acceptance-based procedure. Behav Ther. 2014 Sep;45(5):630-9. doi: 10.1016/j.beth.2014.01.001. Epub 2014 Jan 21.
Smith BP, Coe E, Meyer EC. Acceptance and Commitment Therapy Delivered via Telehealth for the Treatment of Co-Occurring Depression, PTSD, and Nicotine Use in a Male Veteran. Clinical Case Studies 2020;20(1):75-91 doi: 10.1177/1534650120963183[published Online First: Epub Date]|.
Gage FH. Structural plasticity of the adult brain. Dialogues Clin Neurosci. 2004 Jun;6(2):135-41. doi: 10.31887/DCNS.2004.6.2/fgage.
Kozak K, Lucatch AM, Lowe DJE, Balodis IM, MacKillop J, George TP. The neurobiology of impulsivity and substance use disorders: implications for treatment. Ann N Y Acad Sci. 2019 Sep;1451(1):71-91. doi: 10.1111/nyas.13977. Epub 2018 Oct 5.
Crews FT, Boettiger CA. Impulsivity, frontal lobes and risk for addiction. Pharmacol Biochem Behav. 2009 Sep;93(3):237-47. doi: 10.1016/j.pbb.2009.04.018. Epub 2009 May 3.
McKim TH, Dove SJ, Robinson DL, Frohlich F, Boettiger CA. Addiction history moderates the effect of prefrontal 10-Hz transcranial alternating current stimulation on habitual action selection. J Neurophysiol. 2021 Mar 1;125(3):768-780. doi: 10.1152/jn.00180.2020. Epub 2020 Dec 23.
Kapitany-Foveny M, Urban R, Varga G, Potenza MN, Griffiths MD, Szekely A, Paksi B, Kun B, Farkas J, Kokonyei G, Demetrovics Z. The 21-item Barratt Impulsiveness Scale Revised (BIS-R-21): An alternative three-factor model. J Behav Addict. 2020 May 26;9(2):225-246. doi: 10.1556/2006.2020.00030. Print 2020 Jun.
Hermann BA, Meyer EC, Schnurr PP, Batten SV, Walser RD. Acceptance and commitment therapy for co-occurring PTSD and substance use: A manual development study. Journal of Contextual Behavioral Science 2016;5(4):225-34 doi: https://doi.org/10.1016/j.jcbs.2016.07.001[published Online First: Epub Date]|.
Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, Mourdoukoutas AP, Kronberg G, Truong D, Boggio P, Brunoni AR, Charvet L, Fregni F, Fritsch B, Gillick B, Hamilton RH, Hampstead BM, Jankord R, Kirton A, Knotkova H, Liebetanz D, Liu A, Loo C, Nitsche MA, Reis J, Richardson JD, Rotenberg A, Turkeltaub PE, Woods AJ. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016 Sep-Oct;9(5):641-661. doi: 10.1016/j.brs.2016.06.004. Epub 2016 Jun 15.
Fregni F, Nitsche MA, Loo CK, Brunoni AR, Marangolo P, Leite J, Carvalho S, Bolognini N, Caumo W, Paik NJ, Simis M, Ueda K, Ekhitari H, Luu P, Tucker DM, Tyler WJ, Brunelin J, Datta A, Juan CH, Venkatasubramanian G, Boggio PS, Bikson M. Regulatory Considerations for the Clinical and Research Use of Transcranial Direct Current Stimulation (tDCS): review and recommendations from an expert panel. Clin Res Regul Aff. 2015 Mar 1;32(1):22-35. doi: 10.3109/10601333.2015.980944.
Ekici B. Transcranial direct current stimulation-induced seizure: analysis of a case. Clin EEG Neurosci. 2015 Apr;46(2):169. doi: 10.1177/1550059414540647. No abstract available.
Gianni E, Bertoli M, Simonelli I, Paulon L, Tecchio F, Pasqualetti P. tDCS randomized controlled trials in no-structural diseases: a quantitative review. Sci Rep. 2021 Aug 11;11(1):16311. doi: 10.1038/s41598-021-95084-6.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Informed Consent Form
Related Links
Access external resources that provide additional context or updates about the study.
Stop Signal task
Stop Signal Task information
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
STUDY00000768
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.