Management of Retinitis Pigmentosa Via Combination of Wharton's Jelly-derived Mesenchymal Stem Cells and Magnovision
NCT ID: NCT05800301
Last Updated: 2023-04-05
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE3
80 participants
INTERVENTIONAL
2019-01-01
2022-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Material and methods The study included prospective analysis of 130 eyes of 80 retinitis pigmentosa patients with a 36-month follow-up duration. Patients constitute 4 groups with similar demographic characteristics. The subtenon WJ-MSC only group consisted of 34 eyes of 32 RP patients as Group1; The rEMS only group consisted of 32 eyes of 16 RP patients as Group2; The combined management group consisted of 32 eyes of 16 RP patients who received combined WJ-MSC and rEMS as Group3; The natural course (control) group consisted of 32 eyes of 16 RP patients who did not receive any treatment were classified as Group4. Fundus autofluorescence surface area (FAF-field), horizontal and vertical ellipsoid zone width (EZW), fundus perimetry deviation index (FPDI), full field electroretinography magnitude (ERG-m) and best corrected visual acuity (BCVA) changes were compared within and between groups after 36 month follow up period.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Effect of Stem Cells and Stem Cell Exosomes on Visual Functions in Patients With Retinitis Pigmentosa
NCT05413148
Role of UC-MSC and CM to Inhibit Vision Loss in Retinitis Pigmentosa Phase I/II
NCT05909488
Intravitreal Injection of MSCs in Retinitis Pigmentosa
NCT01531348
Safety Issues of Peribulbar Injection of UC-MSC in Patients With Retinitis Pigmentosa
NCT04315025
Autologous Bone Marrow-Derived Stem Cells Transplantation For Retinitis Pigmentosa
NCT01068561
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) have a high paracrine effect and secrete exosomes containing different growth factors (GFs) and neurotrophins. These peptides in the exosome content are functional and structural peptides for neurons. Peptides that cannot be encoded in RP can be substituted by WJ-MSCs exosomes. Growth factors and neurotrophins in the exosome can accelerate the entry of glucose into retina pigment epithelium (RPE) and photoreceptors and their conversion to ATP, an energy molecule. These neurotrophins can also provide homeostasis, preventing apoptosis by accelerating the phagocytosis of cellular metabolic wastes.
High-frequency repetitive electromagnetic stimulation (rEMS) can modulate ion channels in neurons depending on frequency, magnetic field, and duration variables. If the dormant phase - which is the sleep mode caused by genetic mutations in the sensory retina - is prolonged, apoptosis and permanent photoreceptor loss occur. Activation of ion channels and acceleration of neuromodulation by electromagnetic stimulation can prevent neuronal apoptosis. Scientific studies have also shown that rEMS increases mesenchymal stem cells' exosome degranulation. Another effect of rEMS is the iontophoresis effect. The passage of large molecules into the cells through the scleral pores is possible by changing the electrical charges between neurotrophins and their receptors and increasing the affinity. It can also induce the delivery of higher amounts of GFs and neurotrophins into the subretinal environment and retina.
This prospective clinical study aims to investigate whether RP progression can be slowed or maintained with the inoculation of WJ-MSCs alone into the deep subtenon space or in conjunction with rEMS application compared to the natural course of the disease.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
SUPPORTIVE_CARE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Only WJ-MSCs
Consisted of 34 eyes of 32 RP patients treated with only WJ-MSCs, and it was applied only once following necessary preparations. After the inoculation of stem cells, the patients were followed up regularly on the 10th day, 3rd month, and every 6 months after that until 36 th months. For ethical reasons, the worse eye was selected to inject the stem cells instead of both eyes.
Wharton's jelly derived mesenchymal stemcells
The WJ-MSCs suspension from the culture was delivered to the operating room by cold chain and used within 24 h. A total of 1.5 ml of the WJ-MSC suspension was immediately injected into the deep subtenon space of each eye.
Only rEMS
Consisted of 32 eyes of 16 RP patients treated with only rEMS. rEMS was applied with a custom-designed helmet once a week for 30 min for 36 months. Both eyes are stimulated at the same time with the specially designed system for ophthalmologic use (MagnoVisionTM).
Magnovision
Specifically designed helmets producing high-frequency repetitive electromagnetic stimulation (MagnovisionTM, Bioretina Biotechnology, Ankara, Türkiye) stimulated the retinas and visual pathways in both eyes.
WJ-MSCs and rEMS combination
Consisted of 32 eyes of 16 RP patients treated with the WJ-MSCs and rEMS combination. WJ-MSCs were applied first into the deep subtenon space of both eyes after necessary preparations. rEMS application was started 10 days after the WJ-MSC application with a custom-designed helmet for 30 min. WJ-MSCs were inoculated only once, and rEMS was applied regularly once a week for 30 min for 36 months. Both eyes are stimulated at the same time with the specially designed system for ophthalmologic use (MagnoVisionTM).
Wharton's jelly derived mesenchymal stemcells
The WJ-MSCs suspension from the culture was delivered to the operating room by cold chain and used within 24 h. A total of 1.5 ml of the WJ-MSC suspension was immediately injected into the deep subtenon space of each eye.
Magnovision
Specifically designed helmets producing high-frequency repetitive electromagnetic stimulation (MagnovisionTM, Bioretina Biotechnology, Ankara, Türkiye) stimulated the retinas and visual pathways in both eyes.
The natural course
The natural course (control) group consisted of 32 eyes of 16 RP patients who received no treatment and were regularly followed until the 36th month. This group comprised patients who did not accept any treatment and/or were in good condition at baseline.
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Wharton's jelly derived mesenchymal stemcells
The WJ-MSCs suspension from the culture was delivered to the operating room by cold chain and used within 24 h. A total of 1.5 ml of the WJ-MSC suspension was immediately injected into the deep subtenon space of each eye.
Magnovision
Specifically designed helmets producing high-frequency repetitive electromagnetic stimulation (MagnovisionTM, Bioretina Biotechnology, Ankara, Türkiye) stimulated the retinas and visual pathways in both eyes.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* BCVA better than 35 letters;
* Any degree and kind of visual field loss;
* Over 18 years old.
Exclusion Criteria
* Dense cataracts
* Dense vitreus opacities
* Autoimmune retinopathy-like clinical picture
* Any degree of smoking
* Presence of systemic neurological disease with seizure
* Presence of a cardiac pacemaker.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Ankara Universitesi Teknokent
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Umut Arslan
Principal Investigator
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
BioRetina
Ankara, Gölbaşı, Turkey (Türkiye)
Ankara University Biotechnology Institute
Ankara, Türkiye, Turkey (Türkiye)
Umut Arslan
Ankara, , Turkey (Türkiye)
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Ozmert E, Arslan U. Management of Deep Retinal Capillary Ischemia by Electromagnetic Stimulation and Platelet-Rich Plasma: Preliminary Clinical Results. Adv Ther. 2019 Sep;36(9):2273-2286. doi: 10.1007/s12325-019-01040-2. Epub 2019 Aug 5.
Arslan U, Ozmert E. Treatment of resistant chronic central serous chorioretinopathy via platelet-rich plasma with electromagnetic stimulation. Regen Med. 2020 Aug;15(8):2001-2014. doi: 10.2217/rme-2020-0056. Epub 2020 Oct 27.
Ozmert E, Arslan U. Management of retinitis pigmentosa by Wharton's jelly derived mesenchymal stem cells: preliminary clinical results. Stem Cell Res Ther. 2020 Jan 13;11(1):25. doi: 10.1186/s13287-020-1549-6.
Ozmert E, Arslan U. Management of retinitis pigmentosa by Wharton's jelly-derived mesenchymal stem cells: prospective analysis of 1-year results. Stem Cell Res Ther. 2020 Aug 12;11(1):353. doi: 10.1186/s13287-020-01870-w.
Ozmert E, Arslan U. Management of toxic optic neuropathy via a combination of Wharton's jelly-derived mesenchymal stem cells with electromagnetic stimulation. Stem Cell Res Ther. 2021 Sep 27;12(1):518. doi: 10.1186/s13287-021-02577-2.
Arslan U, Ozmert E. Management of Retinitis Pigmentosa via Platelet-Rich Plasma or Combination with Electromagnetic Stimulation: Retrospective Analysis of 1-Year Results. Adv Ther. 2020 May;37(5):2390-2412. doi: 10.1007/s12325-020-01308-y. Epub 2020 Apr 18.
Ozmert E, Arslan U. Management of Retinitis Pigmentosa Via Wharton's Jelly-Derived Mesenchymal Stem Cells or Combination With Magnovision: 3-Year Prospective Results. Stem Cells Transl Med. 2023 Oct 5;12(10):631-650. doi: 10.1093/stcltm/szad051.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
11-962-19
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.