Multimodal Imaging in Vitreo-retinal Surgery and Macular Dystrophies

NCT ID: NCT05747144

Last Updated: 2024-02-13

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Total Enrollment

100 participants

Study Classification

OBSERVATIONAL

Study Start Date

2021-01-15

Study Completion Date

2025-01-16

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The aim of the study is to identify morphological and functional biomarkers of post-operative recovery after vitreoretinal surgery, using decisional support systems (DSS), based on multimodal big-data analysis by means of machine learning techniques in daily clinical practice

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The aim of the study is to identify morphological and functional biomarkers of post-operative recovery after vitreoretinal surgery. Identifying the biomarkers and assessing the predictivity of recovery will make it possible to highlight the categories of patients who can benefit most from surgical treatment, and to target the patient more precisely for personalised medicine and surgery. The introduction of new decisional support systems (DSS), based on multimodal big-data analysis through machine learning techniques in daily clinical practice, is providing new useful information in patient assessment for personalised surgery.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Macular Holes Epiretinal Membrane Retinal Detachment Macular Dystrophies

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Macular hole

Patients affected by macular hole.

Biometry

Intervention Type DIAGNOSTIC_TEST

Biometric measurements performed with IOL Master, if executable Contact or immersion echobiometry if IOL Master cannot be performed

Retinography (Color) + Autofluorescence (AF)

Intervention Type DIAGNOSTIC_TEST

Colour + AF: EIDON, if available (60° not modulable) Colour: COBRA (60° non-modifiable) AF: Spectralis-Heidelberg (choose 55°) Other if available (choose posterior pole examination between 50-60°)

OCT B-scan and OCT angiography (OCTA)

Intervention Type DIAGNOSTIC_TEST

OCT B-scan:

2 scans (6 mm)

1 cross line

OCTA:

3x3 mm + 6x6 mm centred on the fovea 4.5 mm centred on the optic nerve

Microperimetry

Intervention Type DIAGNOSTIC_TEST

1\) fixation pattern 2) retinal sensitivity map

Electrophysiological exams

Intervention Type DIAGNOSTIC_TEST

Layer-by-layer assessment of the retina using focal ERG and pattern ERG according to standardised and published methods , For patients with visus \< 3/10 and unstable fixation a protocol based on component analysis of the photopic ERG from diffuse flash will be used.

Epiretinal membranes

Patients affected by epiretinal membrane.

Biometry

Intervention Type DIAGNOSTIC_TEST

Biometric measurements performed with IOL Master, if executable Contact or immersion echobiometry if IOL Master cannot be performed

Retinography (Color) + Autofluorescence (AF)

Intervention Type DIAGNOSTIC_TEST

Colour + AF: EIDON, if available (60° not modulable) Colour: COBRA (60° non-modifiable) AF: Spectralis-Heidelberg (choose 55°) Other if available (choose posterior pole examination between 50-60°)

OCT B-scan and OCT angiography (OCTA)

Intervention Type DIAGNOSTIC_TEST

OCT B-scan:

2 scans (6 mm)

1 cross line

OCTA:

3x3 mm + 6x6 mm centred on the fovea 4.5 mm centred on the optic nerve

Microperimetry

Intervention Type DIAGNOSTIC_TEST

1\) fixation pattern 2) retinal sensitivity map

Electrophysiological exams

Intervention Type DIAGNOSTIC_TEST

Layer-by-layer assessment of the retina using focal ERG and pattern ERG according to standardised and published methods , For patients with visus \< 3/10 and unstable fixation a protocol based on component analysis of the photopic ERG from diffuse flash will be used.

Retinal detachment

Patients affected by retinal detachment.

Biometry

Intervention Type DIAGNOSTIC_TEST

Biometric measurements performed with IOL Master, if executable Contact or immersion echobiometry if IOL Master cannot be performed

Retinography (Color) + Autofluorescence (AF)

Intervention Type DIAGNOSTIC_TEST

Colour + AF: EIDON, if available (60° not modulable) Colour: COBRA (60° non-modifiable) AF: Spectralis-Heidelberg (choose 55°) Other if available (choose posterior pole examination between 50-60°)

OCT B-scan and OCT angiography (OCTA)

Intervention Type DIAGNOSTIC_TEST

OCT B-scan:

2 scans (6 mm)

1 cross line

OCTA:

3x3 mm + 6x6 mm centred on the fovea 4.5 mm centred on the optic nerve

Microperimetry

Intervention Type DIAGNOSTIC_TEST

1\) fixation pattern 2) retinal sensitivity map

Electrophysiological exams

Intervention Type DIAGNOSTIC_TEST

Layer-by-layer assessment of the retina using focal ERG and pattern ERG according to standardised and published methods , For patients with visus \< 3/10 and unstable fixation a protocol based on component analysis of the photopic ERG from diffuse flash will be used.

Macular dystrophies

Patients affected by macular dystrophies.

Biometry

Intervention Type DIAGNOSTIC_TEST

Biometric measurements performed with IOL Master, if executable Contact or immersion echobiometry if IOL Master cannot be performed

Retinography (Color) + Autofluorescence (AF)

Intervention Type DIAGNOSTIC_TEST

Colour + AF: EIDON, if available (60° not modulable) Colour: COBRA (60° non-modifiable) AF: Spectralis-Heidelberg (choose 55°) Other if available (choose posterior pole examination between 50-60°)

OCT B-scan and OCT angiography (OCTA)

Intervention Type DIAGNOSTIC_TEST

OCT B-scan:

2 scans (6 mm)

1 cross line

OCTA:

3x3 mm + 6x6 mm centred on the fovea 4.5 mm centred on the optic nerve

Microperimetry

Intervention Type DIAGNOSTIC_TEST

1\) fixation pattern 2) retinal sensitivity map

Electrophysiological exams

Intervention Type DIAGNOSTIC_TEST

Layer-by-layer assessment of the retina using focal ERG and pattern ERG according to standardised and published methods , For patients with visus \< 3/10 and unstable fixation a protocol based on component analysis of the photopic ERG from diffuse flash will be used.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Biometry

Biometric measurements performed with IOL Master, if executable Contact or immersion echobiometry if IOL Master cannot be performed

Intervention Type DIAGNOSTIC_TEST

Retinography (Color) + Autofluorescence (AF)

Colour + AF: EIDON, if available (60° not modulable) Colour: COBRA (60° non-modifiable) AF: Spectralis-Heidelberg (choose 55°) Other if available (choose posterior pole examination between 50-60°)

Intervention Type DIAGNOSTIC_TEST

OCT B-scan and OCT angiography (OCTA)

OCT B-scan:

2 scans (6 mm)

1 cross line

OCTA:

3x3 mm + 6x6 mm centred on the fovea 4.5 mm centred on the optic nerve

Intervention Type DIAGNOSTIC_TEST

Microperimetry

1\) fixation pattern 2) retinal sensitivity map

Intervention Type DIAGNOSTIC_TEST

Electrophysiological exams

Layer-by-layer assessment of the retina using focal ERG and pattern ERG according to standardised and published methods , For patients with visus \< 3/10 and unstable fixation a protocol based on component analysis of the photopic ERG from diffuse flash will be used.

Intervention Type DIAGNOSTIC_TEST

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* All patients to undergo vitreo-retinal surgery for:

1. Macular hole
2. Epiretinal membranes
3. Retinal detachment
4. Macular dystrophies (retinal pre-prosthesis)

Exclusion Criteria

* Patients under 18 years of age will be excluded; patients in whom morphological examinations cannot be performed due to poor cooperation or opacity of the dioptric media (e.g. corneal pathology). Quality of morphological images inadequate for post acquisition processing (\<6/10).
Minimum Eligible Age

18 Months

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Fondazione Policlinico Universitario Agostino Gemelli IRCCS

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

RIZZO STANISLAO

Professor

Responsibility Role PRINCIPAL_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Prof. Stanislao Rizzo

Rome, , Italy

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Italy

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Maria Cristina Savastano, MD,PhD

Role: CONTACT

+39 3384443002

Alfonso Savastano, MD,PhD

Role: CONTACT

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Stanislao Rizzo, MD,PhD

Role: primary

References

Explore related publications, articles, or registry entries linked to this study.

Garrity ST, Sarraf D, Freund KB, Sadda SR. Multimodal Imaging of Nonneovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2018 Mar 20;59(4):AMD48-AMD64. doi: 10.1167/iovs.18-24158.

Reference Type BACKGROUND
PMID: 30025107 (View on PubMed)

Acon D, Wu L. Multimodal Imaging in Diabetic Macular Edema. Asia Pac J Ophthalmol (Phila). 2018 Jan-Feb;7(1):22-27. doi: 10.22608/APO.2017504. Epub 2017 Jan 29.

Reference Type BACKGROUND
PMID: 29376234 (View on PubMed)

Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, Sadda SR, Sebag J, Spaide RF, Stalmans P. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology. 2013 Dec;120(12):2611-2619. doi: 10.1016/j.ophtha.2013.07.042. Epub 2013 Sep 17.

Reference Type BACKGROUND
PMID: 24053995 (View on PubMed)

Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018 May;64:1-55. doi: 10.1016/j.preteyeres.2017.11.003. Epub 2017 Dec 8.

Reference Type BACKGROUND
PMID: 29229445 (View on PubMed)

Sun P, Tandias RM, Yu G, Arroyo JG. SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY FINDINGS AND VISUAL OUTCOME AFTER TREATMENT FOR VITREOMACULAR TRACTION. Retina. 2019 Jun;39(6):1054-1060. doi: 10.1097/IAE.0000000000002116.

Reference Type BACKGROUND
PMID: 29595569 (View on PubMed)

Lee CS, Tyring AJ, Deruyter NP, Wu Y, Rokem A, Lee AY. Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed Opt Express. 2017 Jun 23;8(7):3440-3448. doi: 10.1364/BOE.8.003440. eCollection 2017 Jul 1.

Reference Type BACKGROUND
PMID: 28717579 (View on PubMed)

Zur D, Iglicki M, Busch C, Invernizzi A, Mariussi M, Loewenstein A; International Retina Group. OCT Biomarkers as Functional Outcome Predictors in Diabetic Macular Edema Treated with Dexamethasone Implant. Ophthalmology. 2018 Feb;125(2):267-275. doi: 10.1016/j.ophtha.2017.08.031. Epub 2017 Sep 19.

Reference Type BACKGROUND
PMID: 28935399 (View on PubMed)

Beam AL, Kohane IS. Big Data and Machine Learning in Health Care. JAMA. 2018 Apr 3;319(13):1317-1318. doi: 10.1001/jama.2017.18391. No abstract available.

Reference Type BACKGROUND
PMID: 29532063 (View on PubMed)

Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019 May;20(5):e262-e273. doi: 10.1016/S1470-2045(19)30149-4.

Reference Type BACKGROUND
PMID: 31044724 (View on PubMed)

Abramoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. Invest Ophthalmol Vis Sci. 2016 Oct 1;57(13):5200-5206. doi: 10.1167/iovs.16-19964.

Reference Type BACKGROUND
PMID: 27701631 (View on PubMed)

Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016 Dec 13;316(22):2402-2410. doi: 10.1001/jama.2016.17216.

Reference Type BACKGROUND
PMID: 27898976 (View on PubMed)

Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology. 2017 Aug;284(2):574-582. doi: 10.1148/radiol.2017162326. Epub 2017 Apr 24.

Reference Type BACKGROUND
PMID: 28436741 (View on PubMed)

Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.

Reference Type BACKGROUND
PMID: 28117445 (View on PubMed)

Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, Wong EYM, Sabanayagam C, Baskaran M, Ibrahim F, Tan NC, Finkelstein EA, Lamoureux EL, Wong IY, Bressler NM, Sivaprasad S, Varma R, Jonas JB, He MG, Cheng CY, Cheung GCM, Aung T, Hsu W, Lee ML, Wong TY. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA. 2017 Dec 12;318(22):2211-2223. doi: 10.1001/jama.2017.18152.

Reference Type BACKGROUND
PMID: 29234807 (View on PubMed)

Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology. 2018 Aug;125(8):1199-1206. doi: 10.1016/j.ophtha.2018.01.023. Epub 2018 Mar 2.

Reference Type BACKGROUND
PMID: 29506863 (View on PubMed)

Burlina P, Joshi N, Pacheco KD, Freund DE, Kong J, Bressler NM. Utility of Deep Learning Methods for Referability Classification of Age-Related Macular Degeneration. JAMA Ophthalmol. 2018 Nov 1;136(11):1305-1307. doi: 10.1001/jamaophthalmol.2018.3799.

Reference Type BACKGROUND
PMID: 30193354 (View on PubMed)

Grassmann F, Mengelkamp J, Brandl C, Harsch S, Zimmermann ME, Linkohr B, Peters A, Heid IM, Palm C, Weber BHF. A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography. Ophthalmology. 2018 Sep;125(9):1410-1420. doi: 10.1016/j.ophtha.2018.02.037. Epub 2018 Apr 10.

Reference Type BACKGROUND
PMID: 29653860 (View on PubMed)

Brown JM, Campbell JP, Beers A, Chang K, Ostmo S, Chan RVP, Dy J, Erdogmus D, Ioannidis S, Kalpathy-Cramer J, Chiang MF; Imaging and Informatics in Retinopathy of Prematurity (i-ROP) Research Consortium. Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmol. 2018 Jul 1;136(7):803-810. doi: 10.1001/jamaophthalmol.2018.1934.

Reference Type BACKGROUND
PMID: 29801159 (View on PubMed)

Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F, Dong J, Prasadha MK, Pei J, Ting MYL, Zhu J, Li C, Hewett S, Dong J, Ziyar I, Shi A, Zhang R, Zheng L, Hou R, Shi W, Fu X, Duan Y, Huu VAN, Wen C, Zhang ED, Zhang CL, Li O, Wang X, Singer MA, Sun X, Xu J, Tafreshi A, Lewis MA, Xia H, Zhang K. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell. 2018 Feb 22;172(5):1122-1131.e9. doi: 10.1016/j.cell.2018.02.010.

Reference Type BACKGROUND
PMID: 29474911 (View on PubMed)

De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, Askham H, Glorot X, O'Donoghue B, Visentin D, van den Driessche G, Lakshminarayanan B, Meyer C, Mackinder F, Bouton S, Ayoub K, Chopra R, King D, Karthikesalingam A, Hughes CO, Raine R, Hughes J, Sim DA, Egan C, Tufail A, Montgomery H, Hassabis D, Rees G, Back T, Khaw PT, Suleyman M, Cornebise J, Keane PA, Ronneberger O. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018 Sep;24(9):1342-1350. doi: 10.1038/s41591-018-0107-6. Epub 2018 Aug 13.

Reference Type BACKGROUND
PMID: 30104768 (View on PubMed)

Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunovic H. Artificial intelligence in retina. Prog Retin Eye Res. 2018 Nov;67:1-29. doi: 10.1016/j.preteyeres.2018.07.004. Epub 2018 Aug 1.

Reference Type BACKGROUND
PMID: 30076935 (View on PubMed)

Schmidt-Erfurth U, Waldstein SM, Klimscha S, Sadeghipour A, Hu X, Gerendas BS, Osborne A, Bogunovic H. Prediction of Individual Disease Conversion in Early AMD Using Artificial Intelligence. Invest Ophthalmol Vis Sci. 2018 Jul 2;59(8):3199-3208. doi: 10.1167/iovs.18-24106.

Reference Type BACKGROUND
PMID: 29971444 (View on PubMed)

Sarao V, Veritti D, Borrelli E, Sadda SVR, Poletti E, Lanzetta P. A comparison between a white LED confocal imaging system and a conventional flash fundus camera using chromaticity analysis. BMC Ophthalmol. 2019 Nov 19;19(1):231. doi: 10.1186/s12886-019-1241-8.

Reference Type BACKGROUND
PMID: 31744471 (View on PubMed)

Fernandez-Avellaneda P, Breazzano MP, Fragiotta S, Xu X, Zhang Q, Wang RK, Freund KB. BACILLARY LAYER DETACHMENT OVERLYING REDUCED CHORIOCAPILLARIS FLOW IN ACUTE IDIOPATHIC MACULOPATHY. Retin Cases Brief Rep. 2022 Jan 1;16(1):59-66. doi: 10.1097/ICB.0000000000000943.

Reference Type BACKGROUND
PMID: 31764886 (View on PubMed)

Huang NT, Georgiadis C, Gomez J, Tang PH, Drayna P, Koozekanani DD, van Kuijk FJGM, Montezuma SR. Comparing fundus autofluorescence and infrared imaging findings of peripheral retinoschisis, schisis detachment, and retinal detachment. Am J Ophthalmol Case Rep. 2020 Mar 26;18:100666. doi: 10.1016/j.ajoc.2020.100666. eCollection 2020 Jun.

Reference Type BACKGROUND
PMID: 32258825 (View on PubMed)

Stanga PE, Williams JI, Shaarawy SA, Agarwal A, Venkataraman A, Kumar DA, You TT, Hope RS. FIRST-IN-HUMAN CLINICAL STUDY TO INVESTIGATE THE EFFECTIVENESS AND SAFETY OF PARS PLANA VITRECTOMY SURGERY USING A NEW HYPERSONIC TECHNOLOGY. Retina. 2020 Jan;40(1):16-23. doi: 10.1097/IAE.0000000000002365.

Reference Type BACKGROUND
PMID: 30358763 (View on PubMed)

Hubschman JP, Govetto A, Spaide RF, Schumann R, Steel D, Figueroa MS, Sebag J, Gaudric A, Staurenghi G, Haritoglou C, Kadonosono K, Thompson JT, Chang S, Bottoni F, Tadayoni R. Optical coherence tomography-based consensus definition for lamellar macular hole. Br J Ophthalmol. 2020 Dec;104(12):1741-1747. doi: 10.1136/bjophthalmol-2019-315432. Epub 2020 Feb 27.

Reference Type BACKGROUND
PMID: 32107208 (View on PubMed)

Bae K, Lee SM, Kang SW, Kim ES, Yu SY, Kim KT. Atypical epiretinal tissue in full-thickness macular holes: pathogenic and prognostic significance. Br J Ophthalmol. 2019 Feb;103(2):251-256. doi: 10.1136/bjophthalmol-2017-311810. Epub 2018 Apr 26.

Reference Type BACKGROUND
PMID: 29699982 (View on PubMed)

Rizzo S, Tartaro R, Barca F, Caporossi T, Bacherini D, Giansanti F. INTERNAL LIMITING MEMBRANE PEELING VERSUS INVERTED FLAP TECHNIQUE FOR TREATMENT OF FULL-THICKNESS MACULAR HOLES: A COMPARATIVE STUDY IN A LARGE SERIES OF PATIENTS. Retina. 2018 Sep;38 Suppl 1:S73-S78. doi: 10.1097/IAE.0000000000001985.

Reference Type BACKGROUND
PMID: 29232338 (View on PubMed)

Christensen UC. Value of internal limiting membrane peeling in surgery for idiopathic macular hole and the correlation between function and retinal morphology. Acta Ophthalmol. 2009 Dec;87 Thesis 2:1-23. doi: 10.1111/j.1755-3768.2009.01777.x.

Reference Type BACKGROUND
PMID: 19912135 (View on PubMed)

Fukuyama H, Ishikawa H, Komuku Y, Araki T, Kimura N, Gomi F. Comparative analysis of metamorphopsia and aniseikonia after vitrectomy for epiretinal membrane, macular hole, or rhegmatogenous retinal detachment. PLoS One. 2020 May 8;15(5):e0232758. doi: 10.1371/journal.pone.0232758. eCollection 2020.

Reference Type BACKGROUND
PMID: 32384099 (View on PubMed)

Rizzo S, Savastano A, Bacherini D, Savastano MC. Vascular Features of Full-Thickness Macular Hole by OCT Angiography. Ophthalmic Surg Lasers Imaging Retina. 2017 Jan 1;48(1):62-68. doi: 10.3928/23258160-20161219-09.

Reference Type BACKGROUND
PMID: 28060396 (View on PubMed)

Bacherini D, Savastano MC, Dragotto F, Finocchio L, Lenzetti C, Bitossi A, Tartaro R, Giansanti F, Barca F, Savastano A, Caporossi T, Vannozzi L, Sodi A, Luca M, Faraldi F, Virgili G, Rizzo S. Morpho-Functional Evaluation of Full-Thickness Macular Holes by the Integration of Optical Coherence Tomography Angiography and Microperimetry. J Clin Med. 2020 Jan 15;9(1):229. doi: 10.3390/jcm9010229.

Reference Type BACKGROUND
PMID: 31952306 (View on PubMed)

Qi Y, Wang Z, Li SM, You Q, Liang X, Yu Y, Liu W. Effect of internal limiting membrane peeling on normal retinal function evaluated by microperimetry-3. BMC Ophthalmol. 2020 Apr 9;20(1):140. doi: 10.1186/s12886-020-01383-3.

Reference Type BACKGROUND
PMID: 32272972 (View on PubMed)

Smith AJ, Telander DG, Zawadzki RJ, Choi SS, Morse LS, Werner JS, Park SS. High-resolution Fourier-domain optical coherence tomography and microperimetric findings after macula-off retinal detachment repair. Ophthalmology. 2008 Nov;115(11):1923-9. doi: 10.1016/j.ophtha.2008.05.025. Epub 2008 Jul 31.

Reference Type BACKGROUND
PMID: 18672289 (View on PubMed)

Reumueller A, Wassermann L, Salas M, Karantonis MG, Sacu S, Georgopoulos M, Drexler W, Pircher M, Pollreisz A, Schmidt-Erfurth U. Morphologic and Functional Assessment of Photoreceptors After Macula-Off Retinal Detachment With Adaptive-Optics OCT and Microperimetry. Am J Ophthalmol. 2020 Jun;214:72-85. doi: 10.1016/j.ajo.2019.12.015. Epub 2019 Dec 25.

Reference Type BACKGROUND
PMID: 31883465 (View on PubMed)

Falsini B, Serrao S, Fadda A, Iarossi G, Porrello G, Cocco F, Merendino E. Focal electroretinograms and fundus appearance in nonexudative age-related macular degeneration. Quantitative relationship between retinal morphology and function. Graefes Arch Clin Exp Ophthalmol. 1999 Mar;237(3):193-200. doi: 10.1007/s004170050218.

Reference Type BACKGROUND
PMID: 10090581 (View on PubMed)

Falsini B, Bardocci A, Porciatti V, Bolzani R, Piccardi M. Macular dysfunction in multiple sclerosis revealed by steady-state flicker and pattern ERGs. Electroencephalogr Clin Neurophysiol. 1992 Jan;82(1):53-9. doi: 10.1016/0013-4694(92)90182-h.

Reference Type BACKGROUND
PMID: 1370144 (View on PubMed)

Abed E, Placidi G, Campagna F, Federici M, Minnella A, Guerri G, Bertelli M, Piccardi M, Galli-Resta L, Falsini B. Early impairment of the full-field photopic negative response in patients with Stargardt disease and pathogenic variants of the ABCA4 gene. Clin Exp Ophthalmol. 2018 Jul;46(5):519-530. doi: 10.1111/ceo.13115. Epub 2017 Dec 28.

Reference Type BACKGROUND
PMID: 29178665 (View on PubMed)

Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, McLeod L, Delacqua G, Delacqua F, Kirby J, Duda SN; REDCap Consortium. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019 Jul;95:103208. doi: 10.1016/j.jbi.2019.103208. Epub 2019 May 9.

Reference Type BACKGROUND
PMID: 31078660 (View on PubMed)

Savastano MC, Carla MM, Giannuzzi F, Fossataro C, Cestrone V, Boselli F, Biagini I, Beccia F, Raffaele Q, Gravina G, Rizzo C, Savastano A, Rizzo S. OCT analysis of preoperative foveal microstructure in recent-onset macula-off rhegmatogenous retinal detachment: visual acuity prognostic factors. Br J Ophthalmol. 2024 Nov 22;108(12):1743-1748. doi: 10.1136/bjo-2024-325278.

Reference Type DERIVED
PMID: 38719346 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

3680

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.