Multimodal Imaging in Vitreo-retinal Surgery and Macular Dystrophies
NCT ID: NCT05747144
Last Updated: 2024-02-13
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
100 participants
OBSERVATIONAL
2021-01-15
2025-01-16
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Multi-modal Intelligent Diagnosis System for Multiple Ophthalmic Diseases
NCT07143851
Deep Learning Optical Coherence Tomography (OCT) and OCT Angiography (OCTA) in NVC
NCT05969418
Personalized Monitoring of Non-foveal, Non-vision Compromising Atrophic Age-related Macular Degeneration With Artificial Intelligence and Identification of Disease Progression
NCT06351657
Personalised Monitoring of Early and Intermediate Age-related Macular Degeneration With Artificial Intelligence and Identification of Disease Progression
NCT06351670
High Resolution, High-speed Multimodal Ophthalmic Imaging
NCT04129021
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Macular hole
Patients affected by macular hole.
Biometry
Biometric measurements performed with IOL Master, if executable Contact or immersion echobiometry if IOL Master cannot be performed
Retinography (Color) + Autofluorescence (AF)
Colour + AF: EIDON, if available (60° not modulable) Colour: COBRA (60° non-modifiable) AF: Spectralis-Heidelberg (choose 55°) Other if available (choose posterior pole examination between 50-60°)
OCT B-scan and OCT angiography (OCTA)
OCT B-scan:
2 scans (6 mm)
1 cross line
OCTA:
3x3 mm + 6x6 mm centred on the fovea 4.5 mm centred on the optic nerve
Microperimetry
1\) fixation pattern 2) retinal sensitivity map
Electrophysiological exams
Layer-by-layer assessment of the retina using focal ERG and pattern ERG according to standardised and published methods , For patients with visus \< 3/10 and unstable fixation a protocol based on component analysis of the photopic ERG from diffuse flash will be used.
Epiretinal membranes
Patients affected by epiretinal membrane.
Biometry
Biometric measurements performed with IOL Master, if executable Contact or immersion echobiometry if IOL Master cannot be performed
Retinography (Color) + Autofluorescence (AF)
Colour + AF: EIDON, if available (60° not modulable) Colour: COBRA (60° non-modifiable) AF: Spectralis-Heidelberg (choose 55°) Other if available (choose posterior pole examination between 50-60°)
OCT B-scan and OCT angiography (OCTA)
OCT B-scan:
2 scans (6 mm)
1 cross line
OCTA:
3x3 mm + 6x6 mm centred on the fovea 4.5 mm centred on the optic nerve
Microperimetry
1\) fixation pattern 2) retinal sensitivity map
Electrophysiological exams
Layer-by-layer assessment of the retina using focal ERG and pattern ERG according to standardised and published methods , For patients with visus \< 3/10 and unstable fixation a protocol based on component analysis of the photopic ERG from diffuse flash will be used.
Retinal detachment
Patients affected by retinal detachment.
Biometry
Biometric measurements performed with IOL Master, if executable Contact or immersion echobiometry if IOL Master cannot be performed
Retinography (Color) + Autofluorescence (AF)
Colour + AF: EIDON, if available (60° not modulable) Colour: COBRA (60° non-modifiable) AF: Spectralis-Heidelberg (choose 55°) Other if available (choose posterior pole examination between 50-60°)
OCT B-scan and OCT angiography (OCTA)
OCT B-scan:
2 scans (6 mm)
1 cross line
OCTA:
3x3 mm + 6x6 mm centred on the fovea 4.5 mm centred on the optic nerve
Microperimetry
1\) fixation pattern 2) retinal sensitivity map
Electrophysiological exams
Layer-by-layer assessment of the retina using focal ERG and pattern ERG according to standardised and published methods , For patients with visus \< 3/10 and unstable fixation a protocol based on component analysis of the photopic ERG from diffuse flash will be used.
Macular dystrophies
Patients affected by macular dystrophies.
Biometry
Biometric measurements performed with IOL Master, if executable Contact or immersion echobiometry if IOL Master cannot be performed
Retinography (Color) + Autofluorescence (AF)
Colour + AF: EIDON, if available (60° not modulable) Colour: COBRA (60° non-modifiable) AF: Spectralis-Heidelberg (choose 55°) Other if available (choose posterior pole examination between 50-60°)
OCT B-scan and OCT angiography (OCTA)
OCT B-scan:
2 scans (6 mm)
1 cross line
OCTA:
3x3 mm + 6x6 mm centred on the fovea 4.5 mm centred on the optic nerve
Microperimetry
1\) fixation pattern 2) retinal sensitivity map
Electrophysiological exams
Layer-by-layer assessment of the retina using focal ERG and pattern ERG according to standardised and published methods , For patients with visus \< 3/10 and unstable fixation a protocol based on component analysis of the photopic ERG from diffuse flash will be used.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Biometry
Biometric measurements performed with IOL Master, if executable Contact or immersion echobiometry if IOL Master cannot be performed
Retinography (Color) + Autofluorescence (AF)
Colour + AF: EIDON, if available (60° not modulable) Colour: COBRA (60° non-modifiable) AF: Spectralis-Heidelberg (choose 55°) Other if available (choose posterior pole examination between 50-60°)
OCT B-scan and OCT angiography (OCTA)
OCT B-scan:
2 scans (6 mm)
1 cross line
OCTA:
3x3 mm + 6x6 mm centred on the fovea 4.5 mm centred on the optic nerve
Microperimetry
1\) fixation pattern 2) retinal sensitivity map
Electrophysiological exams
Layer-by-layer assessment of the retina using focal ERG and pattern ERG according to standardised and published methods , For patients with visus \< 3/10 and unstable fixation a protocol based on component analysis of the photopic ERG from diffuse flash will be used.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
1. Macular hole
2. Epiretinal membranes
3. Retinal detachment
4. Macular dystrophies (retinal pre-prosthesis)
Exclusion Criteria
18 Months
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Fondazione Policlinico Universitario Agostino Gemelli IRCCS
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
RIZZO STANISLAO
Professor
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Prof. Stanislao Rizzo
Rome, , Italy
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Stanislao Rizzo, MD,PhD
Role: primary
References
Explore related publications, articles, or registry entries linked to this study.
Garrity ST, Sarraf D, Freund KB, Sadda SR. Multimodal Imaging of Nonneovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2018 Mar 20;59(4):AMD48-AMD64. doi: 10.1167/iovs.18-24158.
Acon D, Wu L. Multimodal Imaging in Diabetic Macular Edema. Asia Pac J Ophthalmol (Phila). 2018 Jan-Feb;7(1):22-27. doi: 10.22608/APO.2017504. Epub 2017 Jan 29.
Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, Sadda SR, Sebag J, Spaide RF, Stalmans P. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology. 2013 Dec;120(12):2611-2619. doi: 10.1016/j.ophtha.2013.07.042. Epub 2013 Sep 17.
Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018 May;64:1-55. doi: 10.1016/j.preteyeres.2017.11.003. Epub 2017 Dec 8.
Sun P, Tandias RM, Yu G, Arroyo JG. SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY FINDINGS AND VISUAL OUTCOME AFTER TREATMENT FOR VITREOMACULAR TRACTION. Retina. 2019 Jun;39(6):1054-1060. doi: 10.1097/IAE.0000000000002116.
Lee CS, Tyring AJ, Deruyter NP, Wu Y, Rokem A, Lee AY. Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed Opt Express. 2017 Jun 23;8(7):3440-3448. doi: 10.1364/BOE.8.003440. eCollection 2017 Jul 1.
Zur D, Iglicki M, Busch C, Invernizzi A, Mariussi M, Loewenstein A; International Retina Group. OCT Biomarkers as Functional Outcome Predictors in Diabetic Macular Edema Treated with Dexamethasone Implant. Ophthalmology. 2018 Feb;125(2):267-275. doi: 10.1016/j.ophtha.2017.08.031. Epub 2017 Sep 19.
Beam AL, Kohane IS. Big Data and Machine Learning in Health Care. JAMA. 2018 Apr 3;319(13):1317-1318. doi: 10.1001/jama.2017.18391. No abstract available.
Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019 May;20(5):e262-e273. doi: 10.1016/S1470-2045(19)30149-4.
Abramoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. Invest Ophthalmol Vis Sci. 2016 Oct 1;57(13):5200-5206. doi: 10.1167/iovs.16-19964.
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016 Dec 13;316(22):2402-2410. doi: 10.1001/jama.2016.17216.
Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology. 2017 Aug;284(2):574-582. doi: 10.1148/radiol.2017162326. Epub 2017 Apr 24.
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.
Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, Wong EYM, Sabanayagam C, Baskaran M, Ibrahim F, Tan NC, Finkelstein EA, Lamoureux EL, Wong IY, Bressler NM, Sivaprasad S, Varma R, Jonas JB, He MG, Cheng CY, Cheung GCM, Aung T, Hsu W, Lee ML, Wong TY. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA. 2017 Dec 12;318(22):2211-2223. doi: 10.1001/jama.2017.18152.
Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology. 2018 Aug;125(8):1199-1206. doi: 10.1016/j.ophtha.2018.01.023. Epub 2018 Mar 2.
Burlina P, Joshi N, Pacheco KD, Freund DE, Kong J, Bressler NM. Utility of Deep Learning Methods for Referability Classification of Age-Related Macular Degeneration. JAMA Ophthalmol. 2018 Nov 1;136(11):1305-1307. doi: 10.1001/jamaophthalmol.2018.3799.
Grassmann F, Mengelkamp J, Brandl C, Harsch S, Zimmermann ME, Linkohr B, Peters A, Heid IM, Palm C, Weber BHF. A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography. Ophthalmology. 2018 Sep;125(9):1410-1420. doi: 10.1016/j.ophtha.2018.02.037. Epub 2018 Apr 10.
Brown JM, Campbell JP, Beers A, Chang K, Ostmo S, Chan RVP, Dy J, Erdogmus D, Ioannidis S, Kalpathy-Cramer J, Chiang MF; Imaging and Informatics in Retinopathy of Prematurity (i-ROP) Research Consortium. Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmol. 2018 Jul 1;136(7):803-810. doi: 10.1001/jamaophthalmol.2018.1934.
Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F, Dong J, Prasadha MK, Pei J, Ting MYL, Zhu J, Li C, Hewett S, Dong J, Ziyar I, Shi A, Zhang R, Zheng L, Hou R, Shi W, Fu X, Duan Y, Huu VAN, Wen C, Zhang ED, Zhang CL, Li O, Wang X, Singer MA, Sun X, Xu J, Tafreshi A, Lewis MA, Xia H, Zhang K. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell. 2018 Feb 22;172(5):1122-1131.e9. doi: 10.1016/j.cell.2018.02.010.
De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, Askham H, Glorot X, O'Donoghue B, Visentin D, van den Driessche G, Lakshminarayanan B, Meyer C, Mackinder F, Bouton S, Ayoub K, Chopra R, King D, Karthikesalingam A, Hughes CO, Raine R, Hughes J, Sim DA, Egan C, Tufail A, Montgomery H, Hassabis D, Rees G, Back T, Khaw PT, Suleyman M, Cornebise J, Keane PA, Ronneberger O. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018 Sep;24(9):1342-1350. doi: 10.1038/s41591-018-0107-6. Epub 2018 Aug 13.
Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunovic H. Artificial intelligence in retina. Prog Retin Eye Res. 2018 Nov;67:1-29. doi: 10.1016/j.preteyeres.2018.07.004. Epub 2018 Aug 1.
Schmidt-Erfurth U, Waldstein SM, Klimscha S, Sadeghipour A, Hu X, Gerendas BS, Osborne A, Bogunovic H. Prediction of Individual Disease Conversion in Early AMD Using Artificial Intelligence. Invest Ophthalmol Vis Sci. 2018 Jul 2;59(8):3199-3208. doi: 10.1167/iovs.18-24106.
Sarao V, Veritti D, Borrelli E, Sadda SVR, Poletti E, Lanzetta P. A comparison between a white LED confocal imaging system and a conventional flash fundus camera using chromaticity analysis. BMC Ophthalmol. 2019 Nov 19;19(1):231. doi: 10.1186/s12886-019-1241-8.
Fernandez-Avellaneda P, Breazzano MP, Fragiotta S, Xu X, Zhang Q, Wang RK, Freund KB. BACILLARY LAYER DETACHMENT OVERLYING REDUCED CHORIOCAPILLARIS FLOW IN ACUTE IDIOPATHIC MACULOPATHY. Retin Cases Brief Rep. 2022 Jan 1;16(1):59-66. doi: 10.1097/ICB.0000000000000943.
Huang NT, Georgiadis C, Gomez J, Tang PH, Drayna P, Koozekanani DD, van Kuijk FJGM, Montezuma SR. Comparing fundus autofluorescence and infrared imaging findings of peripheral retinoschisis, schisis detachment, and retinal detachment. Am J Ophthalmol Case Rep. 2020 Mar 26;18:100666. doi: 10.1016/j.ajoc.2020.100666. eCollection 2020 Jun.
Stanga PE, Williams JI, Shaarawy SA, Agarwal A, Venkataraman A, Kumar DA, You TT, Hope RS. FIRST-IN-HUMAN CLINICAL STUDY TO INVESTIGATE THE EFFECTIVENESS AND SAFETY OF PARS PLANA VITRECTOMY SURGERY USING A NEW HYPERSONIC TECHNOLOGY. Retina. 2020 Jan;40(1):16-23. doi: 10.1097/IAE.0000000000002365.
Hubschman JP, Govetto A, Spaide RF, Schumann R, Steel D, Figueroa MS, Sebag J, Gaudric A, Staurenghi G, Haritoglou C, Kadonosono K, Thompson JT, Chang S, Bottoni F, Tadayoni R. Optical coherence tomography-based consensus definition for lamellar macular hole. Br J Ophthalmol. 2020 Dec;104(12):1741-1747. doi: 10.1136/bjophthalmol-2019-315432. Epub 2020 Feb 27.
Bae K, Lee SM, Kang SW, Kim ES, Yu SY, Kim KT. Atypical epiretinal tissue in full-thickness macular holes: pathogenic and prognostic significance. Br J Ophthalmol. 2019 Feb;103(2):251-256. doi: 10.1136/bjophthalmol-2017-311810. Epub 2018 Apr 26.
Rizzo S, Tartaro R, Barca F, Caporossi T, Bacherini D, Giansanti F. INTERNAL LIMITING MEMBRANE PEELING VERSUS INVERTED FLAP TECHNIQUE FOR TREATMENT OF FULL-THICKNESS MACULAR HOLES: A COMPARATIVE STUDY IN A LARGE SERIES OF PATIENTS. Retina. 2018 Sep;38 Suppl 1:S73-S78. doi: 10.1097/IAE.0000000000001985.
Christensen UC. Value of internal limiting membrane peeling in surgery for idiopathic macular hole and the correlation between function and retinal morphology. Acta Ophthalmol. 2009 Dec;87 Thesis 2:1-23. doi: 10.1111/j.1755-3768.2009.01777.x.
Fukuyama H, Ishikawa H, Komuku Y, Araki T, Kimura N, Gomi F. Comparative analysis of metamorphopsia and aniseikonia after vitrectomy for epiretinal membrane, macular hole, or rhegmatogenous retinal detachment. PLoS One. 2020 May 8;15(5):e0232758. doi: 10.1371/journal.pone.0232758. eCollection 2020.
Rizzo S, Savastano A, Bacherini D, Savastano MC. Vascular Features of Full-Thickness Macular Hole by OCT Angiography. Ophthalmic Surg Lasers Imaging Retina. 2017 Jan 1;48(1):62-68. doi: 10.3928/23258160-20161219-09.
Bacherini D, Savastano MC, Dragotto F, Finocchio L, Lenzetti C, Bitossi A, Tartaro R, Giansanti F, Barca F, Savastano A, Caporossi T, Vannozzi L, Sodi A, Luca M, Faraldi F, Virgili G, Rizzo S. Morpho-Functional Evaluation of Full-Thickness Macular Holes by the Integration of Optical Coherence Tomography Angiography and Microperimetry. J Clin Med. 2020 Jan 15;9(1):229. doi: 10.3390/jcm9010229.
Qi Y, Wang Z, Li SM, You Q, Liang X, Yu Y, Liu W. Effect of internal limiting membrane peeling on normal retinal function evaluated by microperimetry-3. BMC Ophthalmol. 2020 Apr 9;20(1):140. doi: 10.1186/s12886-020-01383-3.
Smith AJ, Telander DG, Zawadzki RJ, Choi SS, Morse LS, Werner JS, Park SS. High-resolution Fourier-domain optical coherence tomography and microperimetric findings after macula-off retinal detachment repair. Ophthalmology. 2008 Nov;115(11):1923-9. doi: 10.1016/j.ophtha.2008.05.025. Epub 2008 Jul 31.
Reumueller A, Wassermann L, Salas M, Karantonis MG, Sacu S, Georgopoulos M, Drexler W, Pircher M, Pollreisz A, Schmidt-Erfurth U. Morphologic and Functional Assessment of Photoreceptors After Macula-Off Retinal Detachment With Adaptive-Optics OCT and Microperimetry. Am J Ophthalmol. 2020 Jun;214:72-85. doi: 10.1016/j.ajo.2019.12.015. Epub 2019 Dec 25.
Falsini B, Serrao S, Fadda A, Iarossi G, Porrello G, Cocco F, Merendino E. Focal electroretinograms and fundus appearance in nonexudative age-related macular degeneration. Quantitative relationship between retinal morphology and function. Graefes Arch Clin Exp Ophthalmol. 1999 Mar;237(3):193-200. doi: 10.1007/s004170050218.
Falsini B, Bardocci A, Porciatti V, Bolzani R, Piccardi M. Macular dysfunction in multiple sclerosis revealed by steady-state flicker and pattern ERGs. Electroencephalogr Clin Neurophysiol. 1992 Jan;82(1):53-9. doi: 10.1016/0013-4694(92)90182-h.
Abed E, Placidi G, Campagna F, Federici M, Minnella A, Guerri G, Bertelli M, Piccardi M, Galli-Resta L, Falsini B. Early impairment of the full-field photopic negative response in patients with Stargardt disease and pathogenic variants of the ABCA4 gene. Clin Exp Ophthalmol. 2018 Jul;46(5):519-530. doi: 10.1111/ceo.13115. Epub 2017 Dec 28.
Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, McLeod L, Delacqua G, Delacqua F, Kirby J, Duda SN; REDCap Consortium. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019 Jul;95:103208. doi: 10.1016/j.jbi.2019.103208. Epub 2019 May 9.
Savastano MC, Carla MM, Giannuzzi F, Fossataro C, Cestrone V, Boselli F, Biagini I, Beccia F, Raffaele Q, Gravina G, Rizzo C, Savastano A, Rizzo S. OCT analysis of preoperative foveal microstructure in recent-onset macula-off rhegmatogenous retinal detachment: visual acuity prognostic factors. Br J Ophthalmol. 2024 Nov 22;108(12):1743-1748. doi: 10.1136/bjo-2024-325278.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
3680
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.