Exercise Therapy for Recurrent Low Back Pain: Unraveling the Puzzle of Peripheral Muscle and Central Brain Changes (B670201420984)

NCT ID: NCT05706103

Last Updated: 2025-03-20

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Clinical Phase

NA

Total Enrollment

62 participants

Study Classification

INTERVENTIONAL

Study Start Date

2021-01-04

Study Completion Date

2025-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Exercise therapy has been shown to be effective in decreasing pain and improving function for patients with recurrent low back pain (LBP). Research on the mechanisms that trigger and/or underlie the effects of exercise therapy on LBP problems is of critical importance for the prevention of recurring or persistence of this costly and common condition. One factor that seems to be crucial within this context is the dysfunction of the back muscles. Recent pioneering results have shown that individuals with recurring episodes of LBP have specific dysfunctions of these muscles (peripheral changes) and also dysfunctions at the cortical level (central changes). This work provides the foundation to take a fresh look at the interplay between peripheral and central aspects, and its potential involvement in exercise therapy. The current project will draw on this opportunity to address the following research questions: What are the immediate (after a single session) and the long-term effects (after 18 repeated sessions) of exercise training on: (1) back muscle structure; (2) back muscle function; (3) the structure of the brain; (4) and functional connectivity of the brain. This research project also aims to examine whether the effects are dependent on how the training was performed. Therefore a specific versus a general exercise program will be compared.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Although the cause of persistent non-specific LBP remains unknown, structural and functional alterations of the brain and paravertebral muscles have been proposed as underlying mechanisms. As it is hypothesized that these alterations contribute to, or maintain non-specific LBP, exercise therapy is a key element in the rehabilitation of reoccurring LBP. Specific training of sensorimotor control of the lumbopelvic region (i.e. specific skilled motor training) has shown to decrease pain and disability in patients with LBP, but has not been found superior to other forms of exercise training regarding improvements in clinical outcome measures. On the other hand, this type of training seems to differentially impact the recruitment of the back muscles compared to general exercise training. However, research using multiple treatment sessions and including follow-up outcome assessments is scarce. Furthermore, it is unknown if improvements may be attributed to measurable peripheral changes in the muscle and/or central neural adaptations in the brain. The primary aim of this study is to examine the short and long-term effects of specific skilled motor control training versus unspecific general extension training on pain, functional disability, brain structure/function and muscle structure/function in recurrent LBP patients.

Method: In this double-blind, randomized controlled clinical trial 62 recurrent LBP patients will be randomly allocated (1:1) to receive either specific skilled motor training (i.e. the experimental group) or general extension training (i.e. control group). Each training group will receive 13 weeks of treatment, during which a total of 18 supervised treatment sessions will be delivered in combination with an individualized home-exercise program. Both groups will first receive low-load training (i.e. at 25-30% of the individual's repetition maximum, sessions 1-9) followed by high-load training (i.e. at 40-60% of the individual's one repetition maximum, sessions 10-18). Primary outcome measures include: LBP-related pain and disability (RMDQ, NRS and Margolis pain diagram), lumbar muscle structure and function (Dixon MRI and mf-MRI) and brain structure and function (MRI, DTI and fMRI). Secondary measures include: lumbopelvic control and proprioception (thoracolumbar dissociation test and position-reposition test), trunk muscle activity (RAM and QFRT) and psychosocial factors, including measures of physical activity (IPAQ-LF, SF-36), pain cognitions and perceptions (PCS, PCI and PVAQ), anxiety and depression (HADS), and kinesiophobia (TSK). Experimental data collection will be performed at baseline, immediately following the low-load training (i.e. after the 9th supervised treatment session), following the high-load training (i.e. after the 18th supervised treatment session), and at 3 months follow-up. Experimental data collection will comprise of magnetic resonance imaging of the brain and trunk muscles, clinical assessments assessing muscle function, and a battery of questionnaires evaluating psychosocial factors.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Low Back Pain, Recurrent

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

The study model is parallel. Participants experiencing recurrent LBP patients will be randomly allocated (1:1) to receive either specific skilled motor training or general extension training (i.e. parallel study model). Both groups will first receive low-load training (i.e. at 25-30% of the individual's repetition maximum, sessions 1-9) followed by high-load training (i.e. at 40-60% of the individual's one repetition maximum, sessions 10-18) (i.e. cross-over study model).
Primary Study Purpose

TREATMENT

Blinding Strategy

DOUBLE

Participants Caregivers

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Specific skilled motor training

13 weeks of treatment, with 18 supervised treatment sessions in combination with an individualized home-exercise program. This group will first receive low-load training (i.e. at 25-30% of the individual's repetition maximum, sessions 1-9) followed by high-load training (i.e. at 40-60% of the individual's one repetition maximum, sessions 10-18).

Group Type EXPERIMENTAL

Specific skilled motor training

Intervention Type BEHAVIORAL

Participants allocated to the skilled motor training group will receive sensorimotor training of the intrinsic muscles of the lumbopelvic region, namely the multifidus, transversus abdominis, and pelvic floor muscles.

General extension training

13 weeks of treatment, with 18 supervised treatment sessions in combination with an individualized home-exercise program. This group will first receive low-load training (i.e. at 25-30% of the individual's repetition maximum, sessions 1-9) followed by high-load training (i.e. at 40-60% of the individual's one repetition maximum, sessions 10-18).

Group Type ACTIVE_COMPARATOR

General extension training

Intervention Type BEHAVIORAL

Participants allocated to the general extension training group will receive general training exercises using the David Back equipment from the Back Unit at Ghent University Hospital

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Specific skilled motor training

Participants allocated to the skilled motor training group will receive sensorimotor training of the intrinsic muscles of the lumbopelvic region, namely the multifidus, transversus abdominis, and pelvic floor muscles.

Intervention Type BEHAVIORAL

General extension training

Participants allocated to the general extension training group will receive general training exercises using the David Back equipment from the Back Unit at Ghent University Hospital

Intervention Type BEHAVIORAL

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* History of non-specific recurrent LBP with the first onset being at least 6 months ago
* At least 2 episodes of LBP/year, with an 'episode' implying pain lasting a minimum of 24 hours which is preceded and followed by at least 1 month without LBP
* Minimum LBP intensity during episodes should be ≥2/10 on a numeric rating scale (NRS) from 0 to 10
* During remission the NRS intensity for LBP should be 0.
* LBP should be of that severity that it limits activities of daily living
* LBP should be of that severity that a (para)medic has been consulted at least once regarding the complaints
* Flexion pattern of LBP

Exclusion Criteria

* Chronic LBP (i.e. duration remission \<1 month)
* Subacute LBP (i.e. first onset between 3 and 6 months ago)
* Acute (i.e. first onset \<3 months ago) LBP
* Specific LBP (i.e. LBP proportionate to an identifiable pathology, e.g. lumbar radiculopathy)
* Patients with neuropathic pain
* Patients with chronic widespread pain as defined by the criteria of the 1990 ACR (i.e. fibromyalgia)
* A lifetime history of spinal traumata (e.g. whiplash), surgery (e.g. laminectomy) or deformations (e.g. scoliosis)
* A lifetime history of respiratory, metabolic, neurologic, cardiovascular, inflammatory, orthopedic or rheumatologic diseases
* Concomitant therapies (i.e. rehabilitation, alternative medicine or therapies)
* Contra-indications for MRI (e.g. suffering from claustrophobia, the presence of metallic foreign material in the body, BMI \>30kg/m²)
* Professional athletes
* Pregnant women
* Breastfeeding women
* Women given birth in the last year before enrolment
Minimum Eligible Age

18 Years

Maximum Eligible Age

45 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Fund for Scientific Research, Flanders, Belgium

OTHER

Sponsor Role collaborator

University Ghent

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Jessica van Oosterwijck, Prof

Role: STUDY_DIRECTOR

Ghent University, Pain in Motion

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Ghent University, vakgroep revalidatiewetenschappen

Ghent, Oost-Vlaanderen, Belgium

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Belgium

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Jessica van Oosterwijck, Prof

Role: CONTACT

+3293326919

Lieven Danneels, Prof

Role: CONTACT

+32 9 332 26 35

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Jessica van Oosterwijck, Prof

Role: primary

+32 9 332 69 19

Jaap Wijnen, Msc

Role: backup

+32 9 332 12 16

References

Explore related publications, articles, or registry entries linked to this study.

Hartvigsen J, Hancock MJ, Kongsted A, Louw Q, Ferreira ML, Genevay S, Hoy D, Karppinen J, Pransky G, Sieper J, Smeets RJ, Underwood M; Lancet Low Back Pain Series Working Group. What low back pain is and why we need to pay attention. Lancet. 2018 Jun 9;391(10137):2356-2367. doi: 10.1016/S0140-6736(18)30480-X. Epub 2018 Mar 21.

Reference Type BACKGROUND
PMID: 29573870 (View on PubMed)

Hurwitz EL, Randhawa K, Yu H, Cote P, Haldeman S. The Global Spine Care Initiative: a summary of the global burden of low back and neck pain studies. Eur Spine J. 2018 Sep;27(Suppl 6):796-801. doi: 10.1007/s00586-017-5432-9. Epub 2018 Feb 26.

Reference Type BACKGROUND
PMID: 29480409 (View on PubMed)

Deyo RA. Diagnostic evaluation of LBP: reaching a specific diagnosis is often impossible. Arch Intern Med. 2002 Jul 8;162(13):1444-7; discussion 1447-8. doi: 10.1001/archinte.162.13.1444. No abstract available.

Reference Type BACKGROUND
PMID: 12090877 (View on PubMed)

Iizuka Y, Iizuka H, Mieda T, Tsunoda D, Sasaki T, Tajika T, Yamamoto A, Takagishi K. Prevalence of Chronic Nonspecific Low Back Pain and Its Associated Factors among Middle-Aged and Elderly People: An Analysis Based on Data from a Musculoskeletal Examination in Japan. Asian Spine J. 2017 Dec;11(6):989-997. doi: 10.4184/asj.2017.11.6.989. Epub 2017 Dec 7.

Reference Type BACKGROUND
PMID: 29279756 (View on PubMed)

Itz CJ, Geurts JW, van Kleef M, Nelemans P. Clinical course of non-specific low back pain: a systematic review of prospective cohort studies set in primary care. Eur J Pain. 2013 Jan;17(1):5-15. doi: 10.1002/j.1532-2149.2012.00170.x. Epub 2012 May 28.

Reference Type BACKGROUND
PMID: 22641374 (View on PubMed)

da C Menezes Costa L, Maher CG, Hancock MJ, McAuley JH, Herbert RD, Costa LO. The prognosis of acute and persistent low-back pain: a meta-analysis. CMAJ. 2012 Aug 7;184(11):E613-24. doi: 10.1503/cmaj.111271. Epub 2012 May 14.

Reference Type BACKGROUND
PMID: 22586331 (View on PubMed)

da Silva T, Mills K, Brown BT, Herbert RD, Maher CG, Hancock MJ. Risk of Recurrence of Low Back Pain: A Systematic Review. J Orthop Sports Phys Ther. 2017 May;47(5):305-313. doi: 10.2519/jospt.2017.7415. Epub 2017 Mar 29.

Reference Type BACKGROUND
PMID: 28355981 (View on PubMed)

Goubert D, Meeus M, Willems T, De Pauw R, Coppieters I, Crombez G, Danneels L. The association between back muscle characteristics and pressure pain sensitivity in low back pain patients. Scand J Pain. 2018 Apr 25;18(2):281-293. doi: 10.1515/sjpain-2017-0142.

Reference Type BACKGROUND
PMID: 29794309 (View on PubMed)

Ranger TA, Cicuttini FM, Jensen TS, Peiris WL, Hussain SM, Fairley J, Urquhart DM. Are the size and composition of the paraspinal muscles associated with low back pain? A systematic review. Spine J. 2017 Nov;17(11):1729-1748. doi: 10.1016/j.spinee.2017.07.002. Epub 2017 Jul 26.

Reference Type BACKGROUND
PMID: 28756299 (View on PubMed)

Kregel J, Meeus M, Malfliet A, Dolphens M, Danneels L, Nijs J, Cagnie B. Structural and functional brain abnormalities in chronic low back pain: A systematic review. Semin Arthritis Rheum. 2015 Oct;45(2):229-37. doi: 10.1016/j.semarthrit.2015.05.002. Epub 2015 May 16.

Reference Type BACKGROUND
PMID: 26092329 (View on PubMed)

Coppieters I, Meeus M, Kregel J, Caeyenberghs K, De Pauw R, Goubert D, Cagnie B. Relations Between Brain Alterations and Clinical Pain Measures in Chronic Musculoskeletal Pain: A Systematic Review. J Pain. 2016 Sep;17(9):949-62. doi: 10.1016/j.jpain.2016.04.005. Epub 2016 Jun 3.

Reference Type BACKGROUND
PMID: 27263992 (View on PubMed)

Yuan C, Shi H, Pan P, Dai Z, Zhong J, Ma H, Sheng L. Gray Matter Abnormalities Associated With Chronic Back Pain: A Meta-Analysis of Voxel-based Morphometric Studies. Clin J Pain. 2017 Nov;33(11):983-990. doi: 10.1097/AJP.0000000000000489.

Reference Type BACKGROUND
PMID: 28234752 (View on PubMed)

Brumagne S, Diers M, Danneels L, Moseley GL, Hodges PW. Neuroplasticity of Sensorimotor Control in Low Back Pain. J Orthop Sports Phys Ther. 2019 Jun;49(6):402-414. doi: 10.2519/jospt.2019.8489.

Reference Type BACKGROUND
PMID: 31151373 (View on PubMed)

Moseley GL, Flor H. Targeting cortical representations in the treatment of chronic pain: a review. Neurorehabil Neural Repair. 2012 Jul-Aug;26(6):646-52. doi: 10.1177/1545968311433209. Epub 2012 Feb 13.

Reference Type BACKGROUND
PMID: 22331213 (View on PubMed)

Kilgour AH, Todd OM, Starr JM. A systematic review of the evidence that brain structure is related to muscle structure and their relationship to brain and muscle function in humans over the lifecourse. BMC Geriatr. 2014 Jul 10;14:85. doi: 10.1186/1471-2318-14-85.

Reference Type BACKGROUND
PMID: 25011478 (View on PubMed)

Goossens N, Rummens S, Janssens L, Caeyenberghs K, Brumagne S. Association Between Sensorimotor Impairments and Functional Brain Changes in Patients With Low Back Pain: A Critical Review. Am J Phys Med Rehabil. 2018 Mar;97(3):200-211. doi: 10.1097/PHM.0000000000000859.

Reference Type BACKGROUND
PMID: 29112509 (View on PubMed)

Panjabi M, Abumi K, Duranceau J, Oxland T. Spinal stability and intersegmental muscle forces. A biomechanical model. Spine (Phila Pa 1976). 1989 Feb;14(2):194-200. doi: 10.1097/00007632-198902000-00008.

Reference Type BACKGROUND
PMID: 2922640 (View on PubMed)

Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992 Dec;5(4):383-9; discussion 397. doi: 10.1097/00002517-199212000-00001.

Reference Type BACKGROUND
PMID: 1490034 (View on PubMed)

Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord. 1992 Dec;5(4):390-6; discussion 397. doi: 10.1097/00002517-199212000-00002.

Reference Type BACKGROUND
PMID: 1490035 (View on PubMed)

Goubert D, Oosterwijck JV, Meeus M, Danneels L. Structural Changes of Lumbar Muscles in Non-specific Low Back Pain: A Systematic Review. Pain Physician. 2016 Sep-Oct;19(7):E985-E1000.

Reference Type BACKGROUND
PMID: 27676689 (View on PubMed)

Danneels LA, Vanderstraeten GG, Cambier DC, Witvrouw EE, De Cuyper HJ. CT imaging of trunk muscles in chronic low back pain patients and healthy control subjects. Eur Spine J. 2000 Aug;9(4):266-72. doi: 10.1007/s005860000190.

Reference Type BACKGROUND
PMID: 11261613 (View on PubMed)

D'hooge R, Cagnie B, Crombez G, Vanderstraeten G, Dolphens M, Danneels L. Increased intramuscular fatty infiltration without differences in lumbar muscle cross-sectional area during remission of unilateral recurrent low back pain. Man Ther. 2012 Dec;17(6):584-8. doi: 10.1016/j.math.2012.06.007. Epub 2012 Jul 10.

Reference Type BACKGROUND
PMID: 22784801 (View on PubMed)

Cagnie B, Dhooge F, Schumacher C, De Meulemeester K, Petrovic M, van Oosterwijck J, Danneels L. Fiber Typing of the Erector Spinae and Multifidus Muscles in Healthy Controls and Back Pain Patients: A Systematic Literature Review. J Manipulative Physiol Ther. 2015 Nov-Dec;38(9):653-663. doi: 10.1016/j.jmpt.2015.10.004. Epub 2015 Nov 5.

Reference Type BACKGROUND
PMID: 26547762 (View on PubMed)

Agten A, Stevens S, Verbrugghe J, Timmermans A, Vandenabeele F. Biopsy samples from the erector spinae of persons with nonspecific chronic low back pain display a decrease in glycolytic muscle fibers. Spine J. 2020 Feb;20(2):199-206. doi: 10.1016/j.spinee.2019.09.023. Epub 2019 Sep 27.

Reference Type BACKGROUND
PMID: 31563580 (View on PubMed)

D'hooge R, Cagnie B, Crombez G, Vanderstraeten G, Achten E, Danneels L. Lumbar muscle dysfunction during remission of unilateral recurrent nonspecific low-back pain: evaluation with muscle functional MRI. Clin J Pain. 2013 Mar;29(3):187-94. doi: 10.1097/AJP.0b013e31824ed170.

Reference Type BACKGROUND
PMID: 23369927 (View on PubMed)

Knox MF, Chipchase LS, Schabrun SM, Romero RJ, Marshall PWM. Anticipatory and compensatory postural adjustments in people with low back pain: a systematic review and meta-analysis. Spine J. 2018 Oct;18(10):1934-1949. doi: 10.1016/j.spinee.2018.06.008. Epub 2018 Jun 12.

Reference Type BACKGROUND
PMID: 29906616 (View on PubMed)

Prins MR, Griffioen M, Veeger TTJ, Kiers H, Meijer OG, van der Wurff P, Bruijn SM, van Dieen JH. Evidence of splinting in low back pain? A systematic review of perturbation studies. Eur Spine J. 2018 Jan;27(1):40-59. doi: 10.1007/s00586-017-5287-0. Epub 2017 Sep 12.

Reference Type BACKGROUND
PMID: 28900711 (View on PubMed)

D'hooge R, Hodges P, Tsao H, Hall L, Macdonald D, Danneels L. Altered trunk muscle coordination during rapid trunk flexion in people in remission of recurrent low back pain. J Electromyogr Kinesiol. 2013 Feb;23(1):173-81. doi: 10.1016/j.jelekin.2012.09.003. Epub 2012 Oct 15.

Reference Type BACKGROUND
PMID: 23079004 (View on PubMed)

Geisser ME, Ranavaya M, Haig AJ, Roth RS, Zucker R, Ambroz C, Caruso M. A meta-analytic review of surface electromyography among persons with low back pain and normal, healthy controls. J Pain. 2005 Nov;6(11):711-26. doi: 10.1016/j.jpain.2005.06.008.

Reference Type BACKGROUND
PMID: 16275595 (View on PubMed)

Hodges PW, Moseley GL. Pain and motor control of the lumbopelvic region: effect and possible mechanisms. J Electromyogr Kinesiol. 2003 Aug;13(4):361-70. doi: 10.1016/s1050-6411(03)00042-7.

Reference Type BACKGROUND
PMID: 12832166 (View on PubMed)

Hodges PW. Core stability exercise in chronic low back pain. Orthop Clin North Am. 2003 Apr;34(2):245-54. doi: 10.1016/s0030-5898(03)00003-8.

Reference Type BACKGROUND
PMID: 12914264 (View on PubMed)

Ebenbichler GR, Oddsson LI, Kollmitzer J, Erim Z. Sensory-motor control of the lower back: implications for rehabilitation. Med Sci Sports Exerc. 2001 Nov;33(11):1889-98. doi: 10.1097/00005768-200111000-00014.

Reference Type BACKGROUND
PMID: 11689740 (View on PubMed)

Saragiotto BT, Maher CG, Yamato TP, Costa LO, Menezes Costa LC, Ostelo RW, Macedo LG. Motor control exercise for chronic non-specific low-back pain. Cochrane Database Syst Rev. 2016 Jan 8;2016(1):CD012004. doi: 10.1002/14651858.CD012004.

Reference Type BACKGROUND
PMID: 26742533 (View on PubMed)

Macedo LG, Saragiotto BT, Yamato TP, Costa LO, Menezes Costa LC, Ostelo RW, Maher CG. Motor control exercise for acute non-specific low back pain. Cochrane Database Syst Rev. 2016 Feb 10;2(2):CD012085. doi: 10.1002/14651858.CD012085.

Reference Type BACKGROUND
PMID: 26863390 (View on PubMed)

Foster NE, Anema JR, Cherkin D, Chou R, Cohen SP, Gross DP, Ferreira PH, Fritz JM, Koes BW, Peul W, Turner JA, Maher CG; Lancet Low Back Pain Series Working Group. Prevention and treatment of low back pain: evidence, challenges, and promising directions. Lancet. 2018 Jun 9;391(10137):2368-2383. doi: 10.1016/S0140-6736(18)30489-6. Epub 2018 Mar 21.

Reference Type BACKGROUND
PMID: 29573872 (View on PubMed)

Tsao H, Druitt TR, Schollum TM, Hodges PW. Motor training of the lumbar paraspinal muscles induces immediate changes in motor coordination in patients with recurrent low back pain. J Pain. 2010 Nov;11(11):1120-8. doi: 10.1016/j.jpain.2010.02.004.

Reference Type BACKGROUND
PMID: 20434958 (View on PubMed)

Liu KP, Chan CC, Lee TM, Hui-Chan CW. Mental imagery for promoting relearning for people after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2004 Sep;85(9):1403-8. doi: 10.1016/j.apmr.2003.12.035.

Reference Type BACKGROUND
PMID: 15375808 (View on PubMed)

Tsao H, Galea MP, Hodges PW. Driving plasticity in the motor cortex in recurrent low back pain. Eur J Pain. 2010 Sep;14(8):832-9. doi: 10.1016/j.ejpain.2010.01.001. Epub 2010 Feb 23.

Reference Type BACKGROUND
PMID: 20181504 (View on PubMed)

Masse-Alarie H, Beaulieu LD, Preuss R, Schneider C. Influence of paravertebral muscles training on brain plasticity and postural control in chronic low back pain. Scand J Pain. 2016 Jul;12:74-83. doi: 10.1016/j.sjpain.2016.03.005. Epub 2016 May 11.

Reference Type BACKGROUND
PMID: 28850499 (View on PubMed)

Taubert M, Lohmann G, Margulies DS, Villringer A, Ragert P. Long-term effects of motor training on resting-state networks and underlying brain structure. Neuroimage. 2011 Aug 15;57(4):1492-8. doi: 10.1016/j.neuroimage.2011.05.078. Epub 2011 Jun 7.

Reference Type BACKGROUND
PMID: 21672633 (View on PubMed)

Taubert M, Draganski B, Anwander A, Muller K, Horstmann A, Villringer A, Ragert P. Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J Neurosci. 2010 Sep 1;30(35):11670-7. doi: 10.1523/JNEUROSCI.2567-10.2010.

Reference Type BACKGROUND
PMID: 20810887 (View on PubMed)

Tavor I, Botvinik-Nezer R, Bernstein-Eliav M, Tsarfaty G, Assaf Y. Short-term plasticity following motor sequence learning revealed by diffusion magnetic resonance imaging. Hum Brain Mapp. 2020 Feb 1;41(2):442-452. doi: 10.1002/hbm.24814. Epub 2019 Oct 9.

Reference Type BACKGROUND
PMID: 31596547 (View on PubMed)

Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey matter induced by training. Nature. 2004 Jan 22;427(6972):311-2. doi: 10.1038/427311a. No abstract available.

Reference Type BACKGROUND
PMID: 14737157 (View on PubMed)

Boyke J, Driemeyer J, Gaser C, Buchel C, May A. Training-induced brain structure changes in the elderly. J Neurosci. 2008 Jul 9;28(28):7031-5. doi: 10.1523/JNEUROSCI.0742-08.2008.

Reference Type BACKGROUND
PMID: 18614670 (View on PubMed)

Scholz J, Klein MC, Behrens TE, Johansen-Berg H. Training induces changes in white-matter architecture. Nat Neurosci. 2009 Nov;12(11):1370-1. doi: 10.1038/nn.2412. Epub 2009 Oct 11.

Reference Type BACKGROUND
PMID: 19820707 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

U1111-1283-4631

Identifier Type: REGISTRY

Identifier Source: secondary_id

BC-05152

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Optimize Low Back Pain
NCT03859713 UNKNOWN PHASE3