Causal Role of Frontostriatal Circuitry in Goal-directed Behavior

NCT ID: NCT05593965

Last Updated: 2024-07-17

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

24 participants

Study Classification

INTERVENTIONAL

Study Start Date

2023-01-10

Study Completion Date

2023-07-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The purpose of this clinical trial is to investigate the causal role that frontostriatal circuitry plays in goal-directed behavior. The participants will perform a reward-based decision-making task. During the task, cross-frequency patterned rhythmic transcranial magnetic stimulation (TMS) will be delivered at delta-beta frequency, a control-frequency, or an active sham to either the dorsolateral or medial prefrontal cortex (PFC). Electroencephalography will be collected concurrent with stimulation. Structural and functional magnetic resonance imaging (MRI) will be collected during performance of the reward-based decision-making task to localize the stimulation targets.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

This study is a pilot, four-session, crossover study with transcranial magnetic stimulation (TMS), electroencephalography (EEG), and magnetic resonance imaging (MRI) to understand the causal role of delta-beta coupling in goal-directed behavior in the dorsolateral prefrontal cortex (dlPFC) to dorsal striatum circuit. Participants that request to be in the experiment will provide verbal, documented consent to undergo a phone screening to assess that the participant meets initial exclusion/inclusion criteria. Participants complete an MRI and TMS screening form over the phone to ensure eligibility.

The first session will be an EEG session with the reward-based decision-making task. At the start of the session, the investigators will acquire written informed consent. Then, the investigators will administer a pregnancy test if applicable. Participants will complete five assessments: the Snaith Hamilton Pleasure Scale, Behavioral Activation System and Behavioral Inhibition System, Temporal Experience of Pleasure Scale, the State-Trait Anxiety Inventory, and Ruminative Responses Scale. Note that the participants are from a convenient sample and are not required to be diagnosed with major depressive disorder. Thus, these assessments were selected as they survey various personality traits that might be relevant to performance in the task.

The scalp dimensions of each participant are calculated and an EEG net is applied. Next, the participants complete an eyes-open and eyes-closed resting-state recording of EEG. Then, the streamlined version of the Expenditure of Effort for Reward Task (S-EEfRT) is completed. These data serve as baseline measurement of brain activity without any form of stimulation. This session takes approximately 1.5 hours to complete. After each block of the task, the task difficulty will increase or decrease based on performance. At the end of the session, if the participant chose to perform the hard task greater than 85% of the time or less than 15% of the time, then the participant will not be invited to the next session of the experiment. Participants that do not dynamically change their response based on the incentive are not engaged with the relevant cognitive constructs under investigation in this study.

The second session takes place at the MRI facility. In the 24 hours prior to this session, participants complete an MRI screening form to ensure eligibility based on common contraindications for MRI. During the 60 minutes of scanning, a 5-minute structural MR is acquired and the remaining time is used to complete as many blocks of the S-EEfRT as possible. The minimal number of sessions required to use the data is 5 blocks, which requires approximately 25 minutes to collect. If a participant was unable to complete the requisite number of sessions, then they will be excluded from the study. Functional MRI data is analyzed before the 3rd and 4th session to localize the regions of dorsolateral prefrontal cortex (dlPFC) and medial prefrontal cortex (mPFC) for stimulation. In the localization analysis, a region of interest mask in the head of the left caudate and in left nucleus accumbens are drawn and the region in dlPFC and mPFC with peak functional connectivity in task-based functional connectivity to these regions. In a pilot dataset collected by the investigators, it was found that the contrast of trails in which there was a decision to perform the hard task versus trials in which the easy task was selected was sufficient to localize the anterior middle frontal gyrus. The contrast of trials in which high versus low incentive was offered was sufficient to localize the medial prefrontal cortex. Thus, the investigators will choose regions in these anatomical areas with maximal connectivity to their respective nucleus in the striatum.

The order of regions (dlPFC then mPFC, or mPFC then dlPFC) targeted by TMS in the third and fourth session will be randomized and counter-balanced. In the third and fourth session, participants will complete a TMS contraindications screening form. The same TMS screening form will be administered over the phone and at the start of each of the TMS session. If there is any ambiguity in the contraindications for the TMS form, then the medical monitor who is an epileptologist is consulted and final approval is acquired. Participants will be fitted with a low-profile EEG net. In the third session, the motor threshold of each participant will be calculated using single-pulse TMS to the hand knob of the left primary motor cortex with real-time monitoring of the motor-evoked potential using electrodes on the first dorsal interosseus muscle. Researchers may also use visible twitch to calculate the motor threshold. The motor threshold is defined as the percent stimulator output when a motor-evoked potential or visible twitch is observed approximately 50% of the time. For the fourth session, the same stimulator intensity will be used as in the third session. The structural MRI and regions of interest (dlPFC and mPFC) are imported into neuronavigation software. The participant wears a three-dimensional stereotaxic tracking headband and their head is registered to their structural MRI using canonical coordinates on the scalp. Then, the TMS coil is targeted to either mPFC or dlPFC and the position of the coil relative to the head is recorded throughout the session. The participant performs the S-EEfRT as the patterned trains of TMS are delivered on every trial. Each block of the study is randomized to receive either delta-beta patterned (triplets of TMS pulses at 20 Hertz every 3 Hertz), theta-gamma patterned (triplets of pulses at 50 Hertz every 5 Hertz), or an arrhythmic pattern (same number of pulses and duration with a random inter-pulse interval). After stimulation, a questionnaire is provided with common side effects of TMS. Based on the results of the stimulation side effects questionnaire, a structured adverse events interview is conducted to acquire more information regarding any side effects that were selected to be "very high" by the participant. The third and fourth session will each take approximately two hours.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Executive Function

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

CROSSOVER

Primary Study Purpose

BASIC_SCIENCE

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

TMS to lateral prefrontal cortex followed by TMS to medial prefrontal cortex

Participants will receive TMS while performing a reward-based decision-making task. In the first stimulation session, the TMS coil will be placed over the lateral prefrontal cortex on the scalp. In the second session, the TMS coil will be placed over the medial prefrontal cortex on the scalp. during every session, subjects receive Delta-beta patterned TMS, Theta-gamma patterned TMS, and Arrhythmic TMS.

Group Type EXPERIMENTAL

Delta-beta TMS

Intervention Type DEVICE

TMS will be delivered in a delta-beta pattern in which triplets of pulses delivered at 20 Hz (50 milliseconds between each pulse) are sent every 3 Hz (333 milliseconds between the start of each triplet).

Theta-gamma TMS

Intervention Type DEVICE

TMS will be delivered in a theta-gamma pattern in which triplets of pulses delivered at 50 Hz (20 milliseconds between each pulse) are sent every 5 Hz (200 milliseconds between the start of each triplet).

Arrhythmic TMS

Intervention Type DEVICE

TMS will be delivered in an arrhythmic pattern in which pulses are delivered with a random inter-pulse interval. The number of pulses and duration is matched to that of the Delta-beta TMS and Theta-gamma TMS.

TMS to medial prefrontal cortex followed by TMS to lateral prefrontal cortex

Participants will receive TMS while performing a reward-based decision-making task. In the first stimulation session, the TMS coil will be placed over the medial prefrontal cortex on the scalp. In the second session, the TMS coil will be placed over the lateral prefrontal cortex on the scalp. during every session, subjects receive Delta-beta patterned TMS, Theta-gamma patterned TMS, and Arrhythmic TMS.

Group Type EXPERIMENTAL

Delta-beta TMS

Intervention Type DEVICE

TMS will be delivered in a delta-beta pattern in which triplets of pulses delivered at 20 Hz (50 milliseconds between each pulse) are sent every 3 Hz (333 milliseconds between the start of each triplet).

Theta-gamma TMS

Intervention Type DEVICE

TMS will be delivered in a theta-gamma pattern in which triplets of pulses delivered at 50 Hz (20 milliseconds between each pulse) are sent every 5 Hz (200 milliseconds between the start of each triplet).

Arrhythmic TMS

Intervention Type DEVICE

TMS will be delivered in an arrhythmic pattern in which pulses are delivered with a random inter-pulse interval. The number of pulses and duration is matched to that of the Delta-beta TMS and Theta-gamma TMS.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Delta-beta TMS

TMS will be delivered in a delta-beta pattern in which triplets of pulses delivered at 20 Hz (50 milliseconds between each pulse) are sent every 3 Hz (333 milliseconds between the start of each triplet).

Intervention Type DEVICE

Theta-gamma TMS

TMS will be delivered in a theta-gamma pattern in which triplets of pulses delivered at 50 Hz (20 milliseconds between each pulse) are sent every 5 Hz (200 milliseconds between the start of each triplet).

Intervention Type DEVICE

Arrhythmic TMS

TMS will be delivered in an arrhythmic pattern in which pulses are delivered with a random inter-pulse interval. The number of pulses and duration is matched to that of the Delta-beta TMS and Theta-gamma TMS.

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Healthy
* Between the ages of 18 and 35
* Right handed
* Able to provide informed consent
* Willing to comply with all study procedures
* Available for the duration of the study
* Speak and understand English.

Exclusion Criteria

* Attention Deficit Hyperactivity Disorder (currently under treatment)
* Neurological disorders and conditions, including, but not limited to: History of epilepsy Seizures (except childhood febrile seizures)
* Dementia
* History of stroke
* Parkinson's disease
* Multiple sclerosis
* Cerebral aneurysm
* Brain tumors
* Medical or neurological illness or treatment for a medical disorder that could interfere with study participation (e.g., unstable cardiac disease, human immunodeficiency virus or acquired immunodeficiency syndrome, malignancy, liver or renal impairment)
* Prior brain surgery
* Any brain devices/implants, including cochlear implants and aneurysm clips
* Cardiac pacemaker
* Any other implanted electronic device
* History of current traumatic brain injury
* (For females) Pregnancy or breast feeding
* Anything that, in the opinion of the investigator, would place the participant at increased risk or preclude the participant's full compliance with or completion of the study
Minimum Eligible Age

18 Years

Maximum Eligible Age

35 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Institute of Mental Health (NIMH)

NIH

Sponsor Role collaborator

University of North Carolina, Chapel Hill

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Flavio Frohlich, PhD

Role: PRINCIPAL_INVESTIGATOR

University of North Carolina, Chapel Hill

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of North Carolina at Chapel Hill

Chapel Hill, North Carolina, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Document Type: Informed Consent Form

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

1K99MH126161-01A1

Identifier Type: NIH

Identifier Source: secondary_id

View Link

22-2430

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

fMRI Analysis of Aging and Awareness in Conditioning
NCT03655769 ACTIVE_NOT_RECRUITING NA