Monounsaturated Fatty Acid Supplementation for Overweight and Obese Individuals With Prediabetes
NCT ID: NCT05560971
Last Updated: 2025-02-05
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ACTIVE_NOT_RECRUITING
NA
40 participants
INTERVENTIONAL
2022-11-01
2027-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Saturated Fat Versus Monounsaturated Fat and Insulin Action
NCT01612234
Impact of n-3 Polyunsaturated Fatty Acids in a Protein-enriched Diet With Low GI in Type 2 Diabetes Patients
NCT01474603
Polyunsaturated Fatty Acids Supplementation and Blood Metabolome
NCT03892486
Intervention Study With Omega-3 Fatty Acids for Weight Loss and Insulin Resistance in Adolescents
NCT01456221
Metabolic Effects of Linoleic Acid-Rich Oil Compared to a Blend Oil in Adults With Insulin Resistance
NCT07287514
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The investigators will recruit overweight and obese individuals (BMI 25-40) with mild insulin resistance, prediabetes and/or impaired glucose tolerance. The study is powered only for the primary endpoint, insulin sensitivity. After the screening visit confirms the eligibility for the study; the investigators will perform an oral glucose tolerance test (OGTT) for stratified randomization for better homogeneity between POA and placebo groups. The investigators aim to have 40 participants complete the study which will consist of 2 main overnight visits consisting of an insulin clamp procedure and a mixed meal tolerance test the night prior. Participants will also have a liver MRI and DEXA scan at these two visits. Participants will be asked to consume a palmitoleic acid minimized diet for 10 weeks which will start two weeks before the first overnight visit. This research study will compare insulin sensitivity before and 8 weeks after taking POA vs placebo in the same individuals. After the first overnight visit participants will be given either POA or placebo capsules to take daily for 8 weeks until the second overnight visit. There will also be a short blood draw visit 4 weeks after the first overnight visit.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
OTHER
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Palmitoleic acid
The treatment arm will receive Palmitoleic acid (POA) supplement as Provinal® 420 mg capsules with at least 90% pure POA Ethyl Ester (less than 1% palmitic acid). Participants will be asked to consume 2 Provinal® 420 mg capsules twice a day for 8 weeks.
Palmitoleic acid
Participants will be randomized to either POA or placebo and will be asked to take 2 capsules of the POA or placebo twice a day for 8 weeks.
Placebo
The placebo is a medium chain fatty acid in triglyceride form. The placebo has no shown health effects, neither beneficial or detrimental. Participants will be asked to consume 2 placebo capsules daily twice a day for 8 weeks.
Placebo
Medium chain fatty acids in triglyceride form in capsules with the same shape, color, size and odor of POA capsules
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Palmitoleic acid
Participants will be randomized to either POA or placebo and will be asked to take 2 capsules of the POA or placebo twice a day for 8 weeks.
Placebo
Medium chain fatty acids in triglyceride form in capsules with the same shape, color, size and odor of POA capsules
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age 18 to 70 years
* BMI 25-40 kg/m2
* HbA1c between 5.6 - 6.5, Impaired fasting plasma glucose levels (\>99, ≤126 mg/dL) or OGTT blood glucose at 2 hours between 140-200 mg/dL or HOMA-IR \>2.5
* BP \<150/90 with or without medication
* GFR\>60
* ALT, AST \<300
* Normal thyroid function is defined as screening TSH within normal ranges, with or without medication
Exclusion Criteria
* Pregnancy or breastfeeding
* Use of over-the-counter (OTC) supplements (except vitamin D). The investigators will ensure that study participants are not using supplements containing fish oil or other lipid supplements (e.g., macadamia oil, krill oil, flaxseed, primrose oil, sea buckthorn oil) within 3 months of study participation
* Greater than 3 servings/day combined of cheese, whole-fat milk, kefir, or whole-fat yogurt for the last 3 months before the study.
* Diagnosed with any type of diabetes mellitus and/or taking glucose-lowering medications
* Recent weight loss (more than 7% of total body weight loss in last 3 months)
* Established major chronic diseases such as major cardiovascular disease (history of myocardial infarction, stroke, symptomatic heart failure, coronary artery bypass graft, Atrial fibrillation, symptomatic peripheral arterial disease), bleeding disorder or anticoagulation use, active cancer, end-stage renal disease, proteinuria (\>3g/day), dementia, severe chronic obstructive pulmonary disease (needs systemic steroid therapy), significant liver disease (ALT or AST\>300)
* History of ongoing smoking cigarettes \>1 pack/day, alcohol abuse, or illicit drug abuse
* Treatment with any investigational drug in the one month preceding the study
18 Years
70 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Tersus Life Sciences LLC
INDUSTRY
Brigham and Women's Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Mehmet F. Burak, MD
Associate Physician
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Mehmet Furkan Burak, MD
Role: PRINCIPAL_INVESTIGATOR
Brigham and Women's Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Brigham and Women's Hospital
Boston, Massachusetts, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Burak MF, Inouye KE, White A, Lee A, Tuncman G, Calay ES, Sekiya M, Tirosh A, Eguchi K, Birrane G, Lightwood D, Howells L, Odede G, Hailu H, West S, Garlish R, Neale H, Doyle C, Moore A, Hotamisligil GS. Development of a therapeutic monoclonal antibody that targets secreted fatty acid-binding protein aP2 to treat type 2 diabetes. Sci Transl Med. 2015 Dec 23;7(319):319ra205. doi: 10.1126/scitranslmed.aac6336. Epub 2015 Dec 23.
Cao H, Sekiya M, Ertunc ME, Burak MF, Mayers JR, White A, Inouye K, Rickey LM, Ercal BC, Furuhashi M, Tuncman G, Hotamisligil GS. Adipocyte lipid chaperone AP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab. 2013 May 7;17(5):768-78. doi: 10.1016/j.cmet.2013.04.012.
Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008 Sep 19;134(6):933-44. doi: 10.1016/j.cell.2008.07.048.
Olefsky JM. Fat talks, liver and muscle listen. Cell. 2008 Sep 19;134(6):914-6. doi: 10.1016/j.cell.2008.09.001.
Dimopoulos N, Watson M, Sakamoto K, Hundal HS. Differential effects of palmitate and palmitoleate on insulin action and glucose utilization in rat L6 skeletal muscle cells. Biochem J. 2006 Nov 1;399(3):473-81. doi: 10.1042/BJ20060244.
Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY. Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes. 2001 Jan;50(1):69-76. doi: 10.2337/diabetes.50.1.69.
Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes. 2003 Mar;52(3):726-33. doi: 10.2337/diabetes.52.3.726.
Gravena C, Mathias PC, Ashcroft SJ. Acute effects of fatty acids on insulin secretion from rat and human islets of Langerhans. J Endocrinol. 2002 Apr;173(1):73-80. doi: 10.1677/joe.0.1730073.
Cimen I, Kocaturk B, Koyuncu S, Tufanli O, Onat UI, Yildirim AD, Apaydin O, Demirsoy S, Aykut ZG, Nguyen UT, Watkins SM, Hotamisligil GS, Erbay E. Prevention of atherosclerosis by bioactive palmitoleate through suppression of organelle stress and inflammasome activation. Sci Transl Med. 2016 Sep 28;8(358):358ra126. doi: 10.1126/scitranslmed.aaf9087.
Duckett SK, Volpi-Lagreca G, Alende M, Long NM. Palmitoleic acid reduces intramuscular lipid and restores insulin sensitivity in obese sheep. Diabetes Metab Syndr Obes. 2014 Nov 20;7:553-63. doi: 10.2147/DMSO.S72695. eCollection 2014.
Yang ZH, Miyahara H, Hatanaka A. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes. Lipids Health Dis. 2011 Jul 21;10:120. doi: 10.1186/1476-511X-10-120.
Lima EA, Silveira LS, Masi LN, Crisma AR, Davanso MR, Souza GI, Santamarina AB, Moreira RG, Martins AR, de Sousa LG, Hirabara SM, Rosa Neto JC. Macadamia oil supplementation attenuates inflammation and adipocyte hypertrophy in obese mice. Mediators Inflamm. 2014;2014:870634. doi: 10.1155/2014/870634. Epub 2014 Sep 22.
Riserus U, Willett WC, Hu FB. Dietary fats and prevention of type 2 diabetes. Prog Lipid Res. 2009 Jan;48(1):44-51. doi: 10.1016/j.plipres.2008.10.002. Epub 2008 Nov 7.
Guo X, Jiang X, Chen K, Liang Q, Zhang S, Zheng J, Ma X, Jiang H, Wu H, Tong Q. The Role of Palmitoleic Acid in Regulating Hepatic Gluconeogenesis through SIRT3 in Obese Mice. Nutrients. 2022 Apr 1;14(7):1482. doi: 10.3390/nu14071482.
Bolsoni-Lopes A, Festuccia WT, Chimin P, Farias TS, Torres-Leal FL, Cruz MM, Andrade PB, Hirabara SM, Lima FB, Alonso-Vale MI. Palmitoleic acid (n-7) increases white adipocytes GLUT4 content and glucose uptake in association with AMPK activation. Lipids Health Dis. 2014 Dec 20;13:199. doi: 10.1186/1476-511X-13-199.
de Souza CO, Teixeira AAS, Biondo LA, Lima Junior EA, Batatinha HAP, Rosa Neto JC. Palmitoleic Acid Improves Metabolic Functions in Fatty Liver by PPARalpha-Dependent AMPK Activation. J Cell Physiol. 2017 Aug;232(8):2168-2177. doi: 10.1002/jcp.25715. Epub 2017 Mar 24.
Yang ZH, Takeo J, Katayama M. Oral administration of omega-7 palmitoleic acid induces satiety and the release of appetite-related hormones in male rats. Appetite. 2013 Jun;65:1-7. doi: 10.1016/j.appet.2013.01.009. Epub 2013 Jan 30.
Tovar R, Gavito AL, Vargas A, Soverchia L, Hernandez-Folgado L, Jagerovic N, Baixeras E, Ciccocioppo R, Rodriguez de Fonseca F, Decara J. Palmitoleoylethanolamide Is an Efficient Anti-Obesity Endogenous Compound: Comparison with Oleylethanolamide in Diet-Induced Obesity. Nutrients. 2021 Jul 28;13(8):2589. doi: 10.3390/nu13082589.
Chan KL, Pillon NJ, Sivaloganathan DM, Costford SR, Liu Z, Theret M, Chazaud B, Klip A. Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK). J Biol Chem. 2015 Jul 3;290(27):16979-88. doi: 10.1074/jbc.M115.646992. Epub 2015 May 18.
de Souza CO, Valenzuela CA, Baker EJ, Miles EA, Rosa Neto JC, Calder PC. Palmitoleic Acid has Stronger Anti-Inflammatory Potential in Human Endothelial Cells Compared to Oleic and Palmitic Acids. Mol Nutr Food Res. 2018 Oct;62(20):e1800322. doi: 10.1002/mnfr.201800322. Epub 2018 Aug 28.
Weimann E, Silva MBB, Murata GM, Bortolon JR, Dermargos A, Curi R, Hatanaka E. Topical anti-inflammatory activity of palmitoleic acid improves wound healing. PLoS One. 2018 Oct 11;13(10):e0205338. doi: 10.1371/journal.pone.0205338. eCollection 2018.
Tang J, Yang B, Yan Y, Tong W, Zhou R, Zhang J, Mi J, Li D. Palmitoleic Acid Protects against Hypertension by Inhibiting NF-kappaB-Mediated Inflammation. Mol Nutr Food Res. 2021 Jun;65(12):e2001025. doi: 10.1002/mnfr.202001025. Epub 2021 May 10.
Trico D, Mengozzi A, Nesti L, Hatunic M, Gabriel Sanchez R, Konrad T, Lalic K, Lalic NM, Mari A, Natali A; EGIR-RISC Study Group. Circulating palmitoleic acid is an independent determinant of insulin sensitivity, beta cell function and glucose tolerance in non-diabetic individuals: a longitudinal analysis. Diabetologia. 2020 Jan;63(1):206-218. doi: 10.1007/s00125-019-05013-6. Epub 2019 Nov 1.
Mozaffarian D, Cao H, King IB, Lemaitre RN, Song X, Siscovick DS, Hotamisligil GS. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am J Clin Nutr. 2010 Dec;92(6):1350-8. doi: 10.3945/ajcn.110.003970. Epub 2010 Oct 13.
Stefan N, Kantartzis K, Celebi N, Staiger H, Machann J, Schick F, Cegan A, Elcnerova M, Schleicher E, Fritsche A, Haring HU. Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care. 2010 Feb;33(2):405-7. doi: 10.2337/dc09-0544. Epub 2009 Nov 4.
Hiraoka-Yamamoto J, Ikeda K, Negishi H, Mori M, Hirose A, Sawada S, Onobayashi Y, Kitamori K, Kitano S, Tashiro M, Miki T, Yamori Y. Serum lipid effects of a monounsaturated (palmitoleic) fatty acid-rich diet based on macadamia nuts in healthy, young Japanese women. Clin Exp Pharmacol Physiol. 2004 Dec;31 Suppl 2:S37-8. doi: 10.1111/j.1440-1681.2004.04121.x.
Garg ML, Blake RJ, Wills RB. Macadamia nut consumption lowers plasma total and LDL cholesterol levels in hypercholesterolemic men. J Nutr. 2003 Apr;133(4):1060-3. doi: 10.1093/jn/133.4.1060.
Curb JD, Wergowske G, Dobbs JC, Abbott RD, Huang B. Serum lipid effects of a high-monounsaturated fat diet based on macadamia nuts. Arch Intern Med. 2000 Apr 24;160(8):1154-8. doi: 10.1001/archinte.160.8.1154.
Griel AE, Cao Y, Bagshaw DD, Cifelli AM, Holub B, Kris-Etherton PM. A macadamia nut-rich diet reduces total and LDL-cholesterol in mildly hypercholesterolemic men and women. J Nutr. 2008 Apr;138(4):761-7. doi: 10.1093/jn/138.4.761.
Pinnick KE, Neville MJ, Fielding BA, Frayn KN, Karpe F, Hodson L. Gluteofemoral adipose tissue plays a major role in production of the lipokine palmitoleate in humans. Diabetes. 2012 Jun;61(6):1399-403. doi: 10.2337/db11-1810. Epub 2012 Apr 9.
Imamura F, Fretts A, Marklund M, Ardisson Korat AV, Yang WS, Lankinen M, Qureshi W, Helmer C, Chen TA, Wong K, Bassett JK, Murphy R, Tintle N, Yu CI, Brouwer IA, Chien KL, Frazier-Wood AC, Del Gobbo LC, Djousse L, Geleijnse JM, Giles GG, de Goede J, Gudnason V, Harris WS, Hodge A, Hu F; InterAct Consortium; Koulman A, Laakso M, Lind L, Lin HJ, McKnight B, Rajaobelina K, Riserus U, Robinson JG, Samieri C, Siscovick DS, Soedamah-Muthu SS, Sotoodehnia N, Sun Q, Tsai MY, Uusitupa M, Wagenknecht LE, Wareham NJ, Wu JH, Micha R, Forouhi NG, Lemaitre RN, Mozaffarian D; Fatty Acids and Outcomes Research Consortium (FORCE). Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Med. 2018 Oct 10;15(10):e1002670. doi: 10.1371/journal.pmed.1002670. eCollection 2018 Oct.
Dyerberg J, Bang HO, Hjorne N. Fatty acid composition of the plasma lipids in Greenland Eskimos. Am J Clin Nutr. 1975 Sep;28(9):958-66. doi: 10.1093/ajcn/28.9.958.
Bang HO, Dyerberg J, Hjoorne N. The composition of food consumed by Greenland Eskimos. Acta Med Scand. 1976;200(1-2):69-73. doi: 10.1111/j.0954-6820.1976.tb08198.x.
Adler GK, Hornik ES, Murray G, Bhandari S, Yadav Y, Heydarpour M, Basu R, Garg R, Tirosh A. Acute effects of the food preservative propionic acid on glucose metabolism in humans. BMJ Open Diabetes Res Care. 2021 Jul;9(1):e002336. doi: 10.1136/bmjdrc-2021-002336.
Kampmann U, Mosekilde L, Juhl C, Moller N, Christensen B, Rejnmark L, Wamberg L, Orskov L. Effects of 12 weeks high dose vitamin D3 treatment on insulin sensitivity, beta cell function, and metabolic markers in patients with type 2 diabetes and vitamin D insufficiency - a double-blind, randomized, placebo-controlled trial. Metabolism. 2014 Sep;63(9):1115-24. doi: 10.1016/j.metabol.2014.06.008. Epub 2014 Jun 19.
Tripathy D, Wessman Y, Gullstrom M, Tuomi T, Groop L. Importance of obtaining independent measures of insulin secretion and insulin sensitivity during the same test: results with the Botnia clamp. Diabetes Care. 2003 May;26(5):1395-401. doi: 10.2337/diacare.26.5.1395.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2022P001764
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.