Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ACTIVE_NOT_RECRUITING
NA
15 participants
INTERVENTIONAL
2023-01-10
2026-03-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Fasting-mimicking Diet and Longevity Diet, Body Composition and Aging
NCT05698654
Food Intake, Endocrine Factors and Brown Fat
NCT06285461
Human Plasma Fatty Acid Oscillations
NCT02502435
Effects of Time-Restricted Fasting on the Postprandial Glycemic Responses
NCT05913635
Impacts of Intermittent Fasting on Energy Balance and Associated Health Outcomes
NCT02498002
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Why there is a decrease in mitochondrial function with aging remains under debate, but emerging science indicates that there is a clear connection between mitochondrial biogenesis and function with fuel metabolism and circadian rhythms. Thus, the purpose of this development project is to develop relatively non-invasive measures that are sensitive to fuel metabolism and circadian health which can serve studies conducted within the University of Florida's Pepper Center in the coming years. In the proposed project, we will investigate the extent to which our measures of fuel utilization and circadian health markers are time stable and also sensitive to change following an intervention of time restricted eating, which is expected to impact these variables.
To our knowledge, no study has assessed fuel utilization patterns or circadian health markers in overweight older adults. Measurements of altered mitochondrial oxidation with a preference toward fat metabolism obtained from a blood sample would provide a sensitive biomarker that is relatively easy to obtain from participants for future interventions studies. The use of continuous glucose monitoring may also be used as surrogate measure of adherence to lifestyle interventions involving calorie restriction and/or intervention fasting, in future studies.
In addition to fuel utilization, there is growing recognition that age-related disease conditions and functional decline are associated with disruption of circadian rhythms. These observations raise the possibility that targeting circadian rhythms through timing lifestyle cues, such as meal timing, could be health promoting and may also reduce age associated declines in mobility. The ability to assess markers of circadian and metabolic health in minimally invasive ways through temperature and glucose monitoring, will provide potential valuable measures for explanatory or outcome measures in future studies.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
PREVENTION
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Time Restricted Eating intervention
Participants will be asked to stop eating by 7 PM every day and to fast for a target of 16 hours per day for 8 weeks. During the first two weeks of the intervention, participants will gradually ramp up to a full 16-hour fasting period (Week 1 - fast for 12-14 hours per day, Week 2 - fast for 14-16 hours per day, Week 3 - 8 - fast for 16 hours per day). Participants will be allowed to consume calorie-free beverages, tea, black coffee, sugar-free gum, and they will be encouraged to drink plenty of water throughout the entire intervention period. Additionally, they will be asked to keep a Fasting and Sleeping diary logging their eating habits and sleep quality.
Time Restricted Eating Intervention
All participants will be asked to adhere to suggested fasting and feeding periods throughout the 8 week study period. These participants will self-monitor eating and sleeping habits as well to present to study staff at checkpoints. Self-reported information will be used during group-mediated intervention sessions throughout the duration of the study, as well.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Time Restricted Eating Intervention
All participants will be asked to adhere to suggested fasting and feeding periods throughout the 8 week study period. These participants will self-monitor eating and sleeping habits as well to present to study staff at checkpoints. Self-reported information will be used during group-mediated intervention sessions throughout the duration of the study, as well.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Men and women ≥ 65 years old
* Self-reported difficulty walking ¼ mile or climbing a flight of stairs
* Self-reported sedentariness (\<150 minutes structured exercise per week)
* Walking speed \<1 m/sec on the 4 m walk test
* Able to walk unassisted (cane allowed)
* Have a body mass index between 25 - 40 kg/m2 (inclusive)
* HbA1c \< 5.7 %
Exclusion Criteria
* Actively trying to lose weight by participating in formal weight loss program or significantly restricting calorie intake
* Resting heart rate of \>120 beats per minute, systolic blood pressure \> 180 mmHg and/or diastolic blood pressure of \> 100 mmHg
* Unstable angina, heart attack or stroke in the past 3 months
* Continuous use of supplemental oxygen to manage a chronic pulmonary condition or heart failure
* Rheumatoid arthritis, Parkinson's disease or currently on dialysis
* Active treatment for cancer in the past year
* Diabetes Mellitus
* Known history of skin sensitivity or allergic reaction to adhesives
* Taking medications that preclude fasting for 16 hours (e.g. must be taken with food at least 12 hours apart)
* Any condition that in the opinion of the investigator would impair ability to participate in the trial
65 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Institute on Aging (NIA)
NIH
University of Florida
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Stephen Anton, Ph.D.
Role: PRINCIPAL_INVESTIGATOR
University of Florida
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Florida
Gainesville, Florida, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Sardon Puig L, Valera-Alberni M, Canto C, Pillon NJ. Circadian Rhythms and Mitochondria: Connecting the Dots. Front Genet. 2018 Oct 8;9:452. doi: 10.3389/fgene.2018.00452. eCollection 2018.
Kohsaka A, Das P, Hashimoto I, Nakao T, Deguchi Y, Gouraud SS, Waki H, Muragaki Y, Maeda M. The circadian clock maintains cardiac function by regulating mitochondrial metabolism in mice. PLoS One. 2014 Nov 12;9(11):e112811. doi: 10.1371/journal.pone.0112811. eCollection 2014.
Kuzmiak-Glancy S, Willis WT. Skeletal muscle fuel selection occurs at the mitochondrial level. J Exp Biol. 2014 Jun 1;217(Pt 11):1993-2003. doi: 10.1242/jeb.098863. Epub 2014 Mar 13.
Anton S, Leeuwenburgh C. Fasting or caloric restriction for healthy aging. Exp Gerontol. 2013 Oct;48(10):1003-5. doi: 10.1016/j.exger.2013.04.011. Epub 2013 Apr 29.
Alexeyev MF. Is there more to aging than mitochondrial DNA and reactive oxygen species? FEBS J. 2009 Oct;276(20):5768-87. doi: 10.1111/j.1742-4658.2009.07269.x.
Anton SD, Moehl K, Donahoo WT, Marosi K, Lee SA, Mainous AG 3rd, Leeuwenburgh C, Mattson MP. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity (Silver Spring). 2018 Feb;26(2):254-268. doi: 10.1002/oby.22065. Epub 2017 Oct 31.
Ferrucci L, Guralnik JM, Pahor M, Corti MC, Havlik RJ. Hospital diagnoses, Medicare charges, and nursing home admissions in the year when older persons become severely disabled. JAMA. 1997 Mar 5;277(9):728-34.
Fried LP, Guralnik JM. Disability in older adults: evidence regarding significance, etiology, and risk. J Am Geriatr Soc. 1997 Jan;45(1):92-100. doi: 10.1111/j.1532-5415.1997.tb00986.x.
Manini T. Development of physical disability in older adults. Curr Aging Sci. 2011 Dec;4(3):184-91. doi: 10.2174/1874609811104030184.
Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev. 2009 Jan;8(1):18-30. doi: 10.1016/j.arr.2008.07.002. Epub 2008 Jul 18.
Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle. 2017 Jun;8(3):349-369. doi: 10.1002/jcsm.12178. Epub 2017 Apr 21.
Tarasov AI, Griffiths EJ, Rutter GA. Regulation of ATP production by mitochondrial Ca(2+). Cell Calcium. 2012 Jul;52(1):28-35. doi: 10.1016/j.ceca.2012.03.003. Epub 2012 Apr 12.
Volobueva AS, Melnichenko AA, Grechko AV, Orekhov AN. Mitochondrial genome variability: the effect on cellular functional activity. Ther Clin Risk Manag. 2018 Feb 9;14:237-245. doi: 10.2147/TCRM.S153895. eCollection 2018.
Settembre C, Ballabio A. Lysosome: regulator of lipid degradation pathways. Trends Cell Biol. 2014 Dec;24(12):743-50. doi: 10.1016/j.tcb.2014.06.006. Epub 2014 Jul 21.
Larsen S, Hey-Mogensen M, Rabol R, Stride N, Helge JW, Dela F. The influence of age and aerobic fitness: effects on mitochondrial respiration in skeletal muscle. Acta Physiol (Oxf). 2012 Jul;205(3):423-32. doi: 10.1111/j.1748-1716.2012.02408.x. Epub 2012 Feb 11.
Wang H, Hiatt WR, Barstow TJ, Brass EP. Relationships between muscle mitochondrial DNA content, mitochondrial enzyme activity and oxidative capacity in man: alterations with disease. Eur J Appl Physiol Occup Physiol. 1999 Jun;80(1):22-7. doi: 10.1007/s004210050553.
Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr. 2011 Apr;93(4):884S-90. doi: 10.3945/ajcn.110.001917. Epub 2011 Feb 2.
Kim Y, Triolo M, Hood DA. Impact of Aging and Exercise on Mitochondrial Quality Control in Skeletal Muscle. Oxid Med Cell Longev. 2017;2017:3165396. doi: 10.1155/2017/3165396. Epub 2017 Jun 1.
Peterson CM, Johannsen DL, Ravussin E. Skeletal muscle mitochondria and aging: a review. J Aging Res. 2012;2012:194821. doi: 10.1155/2012/194821. Epub 2012 Jul 19.
Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, Murray AJ, Stubbs B, West J, McLure SW, King MT, Dodd MS, Holloway C, Neubauer S, Drawer S, Veech RL, Griffin JL, Clarke K. Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metab. 2016 Aug 9;24(2):256-68. doi: 10.1016/j.cmet.2016.07.010. Epub 2016 Jul 27.
Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A. Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci. 2018 Feb;19(2):63-80. doi: 10.1038/nrn.2017.156. Epub 2018 Jan 11.
Di Francesco A, Di Germanio C, Bernier M, de Cabo R. A time to fast. Science. 2018 Nov 16;362(6416):770-775. doi: 10.1126/science.aau2095.
Mattson MP, Allison DB, Fontana L, Harvie M, Longo VD, Malaisse WJ, Mosley M, Notterpek L, Ravussin E, Scheer FA, Seyfried TN, Varady KA, Panda S. Meal frequency and timing in health and disease. Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16647-53. doi: 10.1073/pnas.1413965111. Epub 2014 Nov 17.
Kinouchi K, Magnan C, Ceglia N, Liu Y, Cervantes M, Pastore N, Huynh T, Ballabio A, Baldi P, Masri S, Sassone-Corsi P. Fasting Imparts a Switch to Alternative Daily Pathways in Liver and Muscle. Cell Rep. 2018 Dec 18;25(12):3299-3314.e6. doi: 10.1016/j.celrep.2018.11.077.
Buhr ED, Takahashi JS. Molecular components of the Mammalian circadian clock. Handb Exp Pharmacol. 2013;(217):3-27. doi: 10.1007/978-3-642-25950-0_1.
Settembre C, Ballabio A. Cell metabolism: autophagy transcribed. Nature. 2014 Dec 4;516(7529):40-1. doi: 10.1038/nature13939. Epub 2014 Nov 12. No abstract available.
Kalfalah F, Janke L, Schiavi A, Tigges J, Ix A, Ventura N, Boege F, Reinke H. Crosstalk of clock gene expression and autophagy in aging. Aging (Albany NY). 2016 Aug 28;8(9):1876-1895. doi: 10.18632/aging.101018.
Hood S, Amir S. The aging clock: circadian rhythms and later life. J Clin Invest. 2017 Feb 1;127(2):437-446. doi: 10.1172/JCI90328. Epub 2017 Feb 1.
Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, Ellisman MH, Panda S. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012 Jun 6;15(6):848-60. doi: 10.1016/j.cmet.2012.04.019. Epub 2012 May 17.
Sun N, Youle RJ, Finkel T. The Mitochondrial Basis of Aging. Mol Cell. 2016 Mar 3;61(5):654-666. doi: 10.1016/j.molcel.2016.01.028.
Tahara Y, Takatsu Y, Shiraishi T, Kikuchi Y, Yamazaki M, Motohashi H, Muto A, Sasaki H, Haraguchi A, Kuriki D, Nakamura TJ, Shibata S. Age-related circadian disorganization caused by sympathetic dysfunction in peripheral clock regulation. NPJ Aging Mech Dis. 2017 Jan 5;3:16030. doi: 10.1038/npjamd.2016.30. eCollection 2017.
Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994 Mar;49(2):M85-94. doi: 10.1093/geronj/49.2.m85.
Rantanen T, Guralnik JM, Foley D, Masaki K, Leveille S, Curb JD, White L. Midlife hand grip strength as a predictor of old age disability. JAMA. 1999 Feb 10;281(6):558-60. doi: 10.1001/jama.281.6.558.
Knaggs JD, Larkin KA, Manini TM. Metabolic cost of daily activities and effect of mobility impairment in older adults. J Am Geriatr Soc. 2011 Nov;59(11):2118-23. doi: 10.1111/j.1532-5415.2011.03655.x. Epub 2011 Oct 22.
WEIR JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949 Aug;109(1-2):1-9. doi: 10.1113/jphysiol.1949.sp004363. No abstract available.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Informed Consent Form
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
IRB202102618 -N
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.