Allogeneic Hematopoietic Stem Cell Transplantation for 4/M Neuroblastoma

NCT ID: NCT05303727

Last Updated: 2022-07-01

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

NOT_YET_RECRUITING

Clinical Phase

PHASE2

Total Enrollment

64 participants

Study Classification

INTERVENTIONAL

Study Start Date

2022-08-31

Study Completion Date

2027-08-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Neuroblastoma (NB) is the most common extracranial solid tumor of embryonal origin in children. According to the International Neuroblastoma Risk Group (INRG) staging criteria and the International Neuroblastoma Staging System (INSS) ,NB preoperative staging is divided into L1, L2, M and Ms stages, the postoperative staging is divided into 1 to 4 stages and 4s stage. Among them, 4/M stage is of the highest degree of malignancy and the worst prognosis. Despite the aggressive combination therapy, the 5-year survival rate (OS) is still less than 15%, and the 2-year relapse rate is 80%. Currently, no effective treatment is accessible for refractory/relapsed stage 4/M NB after completing conventional therapy.

In hematopoietic stem cell transplantation (HSCT) , conditioning regimen with high-dose radiotherapy and chemotherapy is implemented to eradicate tumor cells and abnormal clonal cells in the patient, block the pathogenesis, and restore the patient's hematopoietic and immune systems by transplanting normal hematopoietic stem cells. According to the source of hematopoietic stem cells, HSCT can be divided into two types: autologous hematopoietic stem cell transplantation (auto-HSCT) and allogeneic hematopoietic stem cell transplantation (allo-HSCT). It has been confirmed that benefiting from the graft versus tumor(GVT) effect, allo-HSCT can clear residual lesions in refractory/relapsed NB patients post-auto-HSCT,and prolong the survival time of patients. Our center has explored the conditioning regimen, treatment of residual tumor lesions before transplantation, and strategies to reduce transplantation-related death (TRM) and enhance the GVT effect. However, the sample size is small, and multicenter and larger sample size research are needed. This study will further observe the clinical efficacy and safety of allo-HSCT in the treatment of 4/M stage NB, and provide a new treatment method and option for 4/M stage NB.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Purposes: To evaluate the efficacy and safety of allo-HSCT in children with stage 4/M high-risk NB through a multi-center prospective single-arm clinical research grouped according to different types of donors, graft sources, and stratified conditioning regimen.

Primary objectives: To evaluate the efficacy (3-year OS, EFS) of allo-HSCT in the treatment of children with stage 4/M NB through a multicenter prospective single-arm clinical study.

Secondary objectives:

1. To evaluate the safety of allo-HSCT in the treatment of children with stage 4/M NB \[toxicity of conditioning regimen, engraftment rate, early transplantation-related mortality (\<100d TRM), transplantation-related complications (VOD, thrombotic microangiopathy(TMA), acute/chronic graft-versus-host disease (GVHD), Epstein-Barr virus(EBV)/cytomegalovirus(CMV) viremia and EBV/CMV related diseases or other pathogenic infections, etc.\];
2. Improvement and optimization of allo-HSCT conditioning regimen. Outline: This is a multicenter study. Conditioning regimen: There are 3 protocols according to different sources of donor: (1) Cord blood HSCT: Flu+Bu+cyclophosphamide (CTX)+Topotecan (without ATG); (2) Peripheral blood HSCT or haploid bone marrow combined with peripheral stem cell transplantation: Flu+Bu+Melphalan+Antithymocyte globulin (ATG)+ Thiotepa (TT) or (3) Flu+Bu+Melphalan+ATG (applicable to peripheral stem cells or haploid bone marrow combined with peripheral stem cell transplantation for which TT cannot be used).

Transplantation: Patients undergo cord blood stem cell or bone marrow or granulocyte colony stimulating factor (G-CSF) mobilized peripheral blood stem cell transplantation on day 0.

GVHD prophylaxis: Cyclosporine or tacrolimus combined with methotrexate is used for related matched transplantation, cyclosporine combined with mycophenolate mofetil for umbilical cord blood transplantation, and cyclosporine combined with mycophenolate mofetil and methotrexate for haploidentical transplantation to prevent GVHD.

After completion of transplantation, patients are followed periodically at least 3 years.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Neuroblastoma

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

There are 3 groups according to different sources of donor: (1) Cord blood HSCT: Flu+Bu+CTX+Topotecan (without ATG); (2) Peripheral blood HSCT or haploid bone marrow combined with peripheral stem cell transplantation: Flu+Bu+Melphalan+Antithymocyte globulin (ATG)+ Thiotepa (TT) or (3) Flu+Bu+Melphalan+ATG (applicable to peripheral stem cells or haploid bone marrow combined with peripheral stem cell transplantation for which TT cannot be used).
Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Conditioning regimen for different sources of donors

There are 3 groups according to different sources of donor: (1) Cord blood HSCT: Flu+Bu+CTX+Topotecan (without ATG); (2) Peripheral blood HSCT or haploid bone marrow combined with peripheral stem cell transplantation: Flu+Bu+Melphalan+Antithymocyte globulin (ATG)+ Thiotepa (TT) or (3) Flu+Bu+Melphalan+ATG (applicable to peripheral stem cells or haploid bone marrow combined with peripheral stem cell transplantation for which TT cannot be used).

Group Type EXPERIMENTAL

Anti Thymocyte Globulin

Intervention Type DRUG

2.5 mg/kg/day;2 doses on day -3 and day -2 for matched sibling donor transplantation;3 doses on day -4,-3 and day -2 for unrelated donor transplantation;4 doses on day -5,-4,-3 and day -2 for haploidentical donor transplantation

Fludarabine

Intervention Type DRUG

30 mg/m2/day for 5 days

Cyclophosphamide injection

Intervention Type DRUG

60 mg/kg/day for 2 days in cord blood stem cell transplantation

Topotecan

Intervention Type DRUG

2mg/m2/day for 3 days in cord blood stem cell transplantation

Melphalan

Intervention Type DRUG

70mg/m2/day,for peripheral stem cell transplantation or haploidentical bone marrow combined with peripheral stem cell transplantation;2 doses on day -3 and day -2 when conditioning regimen containing thiotepa;3 doses on day -4,-3 and day -2 when conditioning regimen not containing thiotepa;

Thiotepa

Intervention Type DRUG

5 mg/kg/day for 2 days in peripheral stem cell transplantation or haploidentical bone marrow combined with peripheral stem cell transplantation

Busulfan

Intervention Type DRUG

0.8mg/kg/dose;8 doses in cord blood stem cell transplantation;12 doses in peripheral stem cell transplantation or haploidentical bone marrow combined with peripheral stem cell transplantation when conditioning regimen containing thiotepa;16 doses in peripheral stem cell transplantation or haploidentical bone marrow combined with peripheral stem cell transplantation when conditioning regimen not containing thiotepa;

Cyclosporine

Intervention Type DRUG

2.5\~4 mg/kg/dose every 12 hours orally;1.5\~2 mg /kg/dose every 12 hours intravenously; trough concentration maintained at 150\~250ng/ml

Tacrolimus

Intervention Type DRUG

0.02\~0.03 mg/kg/day as continuous infusion or 12 hour divided doses

Mycophenolate Mofetil

Intervention Type DRUG

15 mg/kg/dose every 12 hours

Methotrexate

Intervention Type DRUG

15 mg/m2/dose on d+1 and 10 mg/m2/dose on d+3,d+6 in peripheral stem cell transplantation

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Anti Thymocyte Globulin

2.5 mg/kg/day;2 doses on day -3 and day -2 for matched sibling donor transplantation;3 doses on day -4,-3 and day -2 for unrelated donor transplantation;4 doses on day -5,-4,-3 and day -2 for haploidentical donor transplantation

Intervention Type DRUG

Fludarabine

30 mg/m2/day for 5 days

Intervention Type DRUG

Cyclophosphamide injection

60 mg/kg/day for 2 days in cord blood stem cell transplantation

Intervention Type DRUG

Topotecan

2mg/m2/day for 3 days in cord blood stem cell transplantation

Intervention Type DRUG

Melphalan

70mg/m2/day,for peripheral stem cell transplantation or haploidentical bone marrow combined with peripheral stem cell transplantation;2 doses on day -3 and day -2 when conditioning regimen containing thiotepa;3 doses on day -4,-3 and day -2 when conditioning regimen not containing thiotepa;

Intervention Type DRUG

Thiotepa

5 mg/kg/day for 2 days in peripheral stem cell transplantation or haploidentical bone marrow combined with peripheral stem cell transplantation

Intervention Type DRUG

Busulfan

0.8mg/kg/dose;8 doses in cord blood stem cell transplantation;12 doses in peripheral stem cell transplantation or haploidentical bone marrow combined with peripheral stem cell transplantation when conditioning regimen containing thiotepa;16 doses in peripheral stem cell transplantation or haploidentical bone marrow combined with peripheral stem cell transplantation when conditioning regimen not containing thiotepa;

Intervention Type DRUG

Cyclosporine

2.5\~4 mg/kg/dose every 12 hours orally;1.5\~2 mg /kg/dose every 12 hours intravenously; trough concentration maintained at 150\~250ng/ml

Intervention Type DRUG

Tacrolimus

0.02\~0.03 mg/kg/day as continuous infusion or 12 hour divided doses

Intervention Type DRUG

Mycophenolate Mofetil

15 mg/kg/dose every 12 hours

Intervention Type DRUG

Methotrexate

15 mg/m2/dose on d+1 and 10 mg/m2/dose on d+3,d+6 in peripheral stem cell transplantation

Intervention Type DRUG

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

ATG Fludara CTX Topotecan Hydrochloride Alkeran thiophosphoramide Busulfex Sandimmune Prograf Cellcept amethopterin

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Age≤18 years old;
2. After at least 7 courses of induction chemotherapy (surgical resection of the primary tumor or metastatic disease has been completed during the period), evaluation of disease is CR, tumor markers (blood NSE and urine VMA) and minimal residual disease by flow cytometry of bone marrow and peripheral blood are negative; the primary tumor has completed radiotherapy before HSCT;
3. For patients with PR or VGPR, tumor markers (blood NSE and urine VMA) and minimal residual disease by flow cytometry of bone marrow and peripheral blood are negative; the primary tumor and metastatic lesions have completed radiotherapy before HSCT;
4. Relapsed patients achieve CR/VGPR/PR after re-induction or salvage chemotherapy, tumor markers (blood NSE and urine VMA) and minimal residual disease by flow cytometry of bone marrow and peripheral blood are negative; the primary tumor and metastatic lesions have completed radiotherapy before HSCT;
5. Whole brain and whole spinal cord radiotherapy have completed before HSCT in patients with central invasion at onset;
6. The blood routine has generally returned to normal and there is no dysfunction of major organs such as the heart, liver, lung, and kidney;
7. The guardian/patient accept the treatment of this research, sign the informed consent, and complete the follow-up.

Exclusion Criteria

1. With severe cardiac insufficiency, cardiac ejection fraction (EF) is less than 50%; or severe cardiac disease, the patient can not tolerate the conditioning regimen according to the investigators' evaluation;
2. With severe pulmonary insufficiency (severe obstructive and/or restrictive ventilation disorders), the patient can not tolerate the conditioning regimen according to the investigators' evaluation;
3. With severe liver function impairment, ALT\>5 times upper limit of normal, or total bilirubin\>3 times upper limit of normal; the patient can not tolerate the conditioning regimen according to the investigators' evaluation;
4. With severe renal insufficiency, creatinine\>2 times upper limit of normal; or corrected creatinine clearance rate Ccr\<50ml/min; the patient can not tolerate the conditioning regimen according to the investigators' evaluation;
5. With severe active bleeding or severe active infection; the patient can not tolerate the conditioning regimen according to the investigators' evaluation;
6. Allergic reactions or serious adverse reactions occurred in the previous use of conditioning regimen-related drugs, the patient can not tolerate the conditioning regimen according to the investigators' evaluation;
7. The guardian/patient cannot understand or comply with the treatment plan;
8. Other reasons for not being selected due to the investigator's evaluation.
Maximum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Yang Li

Role: STUDY_DIRECTOR

Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University

Jianpei Fang

Role: STUDY_DIRECTOR

Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Sun Yat-sen Memorial Hospital, Sun Yat-sen University

Guangzhou, Guangdong, China

Site Status

Countries

Review the countries where the study has at least one active or historical site.

China

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Ke Huang, MD

Role: CONTACT

+8602034070821

Su Liu, MD

Role: CONTACT

+8613512742517

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Ke Huang, MD

Role: primary

+8602034070821

Su Liu, MD

Role: backup

+8613512742517

References

Explore related publications, articles, or registry entries linked to this study.

Pastor ER, Mousa SA. Current management of neuroblastoma and future direction. Crit Rev Oncol Hematol. 2019 Jun;138:38-43. doi: 10.1016/j.critrevonc.2019.03.013. Epub 2019 Apr 1.

Reference Type BACKGROUND
PMID: 31092383 (View on PubMed)

Basta NO, Halliday GC, Makin G, Birch J, Feltbower R, Bown N, Elliott M, Moreno L, Barone G, Pearson AD, James PW, Tweddle DA, McNally RJ. Factors associated with recurrence and survival length following relapse in patients with neuroblastoma. Br J Cancer. 2016 Oct 25;115(9):1048-1057. doi: 10.1038/bjc.2016.302. Epub 2016 Oct 4.

Reference Type BACKGROUND
PMID: 27701387 (View on PubMed)

Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K, Kaneko M, London WB, Matthay KK, Nuchtern JG, von Schweinitz D, Simon T, Cohn SL, Pearson AD; INRG Task Force. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009 Jan 10;27(2):298-303. doi: 10.1200/JCO.2008.16.6876. Epub 2008 Dec 1.

Reference Type BACKGROUND
PMID: 19047290 (View on PubMed)

Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, De Bernardi B, Evans AE, Favrot M, Hedborg F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993 Aug;11(8):1466-77. doi: 10.1200/JCO.1993.11.8.1466.

Reference Type BACKGROUND
PMID: 8336186 (View on PubMed)

Smith V, Foster J. High-Risk Neuroblastoma Treatment Review. Children (Basel). 2018 Aug 28;5(9):114. doi: 10.3390/children5090114.

Reference Type BACKGROUND
PMID: 30154341 (View on PubMed)

London WB, Bagatell R, Weigel BJ, Fox E, Guo D, Van Ryn C, Naranjo A, Park JR. Historical time to disease progression and progression-free survival in patients with recurrent/refractory neuroblastoma treated in the modern era on Children's Oncology Group early-phase trials. Cancer. 2017 Dec 15;123(24):4914-4923. doi: 10.1002/cncr.30934. Epub 2017 Sep 8.

Reference Type BACKGROUND
PMID: 28885700 (View on PubMed)

Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D, Gerbing RB, London WB, Villablanca JG. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children's oncology group study. J Clin Oncol. 2009 Mar 1;27(7):1007-13. doi: 10.1200/JCO.2007.13.8925. Epub 2009 Jan 26.

Reference Type BACKGROUND
PMID: 19171716 (View on PubMed)

Ladenstein R, Potschger U, Pearson ADJ, Brock P, Luksch R, Castel V, Yaniv I, Papadakis V, Laureys G, Malis J, Balwierz W, Ruud E, Kogner P, Schroeder H, de Lacerda AF, Beck-Popovic M, Bician P, Garami M, Trahair T, Canete A, Ambros PF, Holmes K, Gaze M, Schreier G, Garaventa A, Vassal G, Michon J, Valteau-Couanet D; SIOP Europe Neuroblastoma Group (SIOPEN). Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): an international, randomised, multi-arm, open-label, phase 3 trial. Lancet Oncol. 2017 Apr;18(4):500-514. doi: 10.1016/S1470-2045(17)30070-0. Epub 2017 Mar 2.

Reference Type BACKGROUND
PMID: 28259608 (View on PubMed)

Du H, Chen J, Qin M, Fang J, Li Z, Zhu Y, Sun X, Huang D, Yu J, Tang Y, Hu S, Li J, Zhang Z, Luan Z. Pediatric hematopoietic stem cell transplantation in China: Data and trends during 1998-2012. Pediatr Transplant. 2015 Aug;19(5):563-70. doi: 10.1111/petr.12525. Epub 2015 Jun 8.

Reference Type BACKGROUND
PMID: 26058853 (View on PubMed)

Uemura S, Ishida T, Thwin KKM, Yamamoto N, Tamura A, Kishimoto K, Hasegawa D, Kosaka Y, Nino N, Lin KS, Takafuji S, Mori T, Iijima K, Nishimura N. Dynamics of Minimal Residual Disease in Neuroblastoma Patients. Front Oncol. 2019 Jun 4;9:455. doi: 10.3389/fonc.2019.00455. eCollection 2019.

Reference Type BACKGROUND
PMID: 31214500 (View on PubMed)

Hirayama M, Azuma E, Araki M, Komada Y, Nakagawa A. Evidence of graft-versus-tumor effect in refractory metastatic neuroblastoma. Transplantation. 2006 Jul 15;82(1):142-4. doi: 10.1097/01.tp.0000225780.90991.49. No abstract available.

Reference Type BACKGROUND
PMID: 16861958 (View on PubMed)

Marabelle A, Paillard C, Tchirkov A, Halle P, Chassagne J, Demeocq F, Kanold J. Graft-versus-tumour effect in refractory metastatic neuroblastoma. Bone Marrow Transplant. 2007 Jun;39(12):809-10. doi: 10.1038/sj.bmt.1705681. Epub 2007 Apr 23. No abstract available.

Reference Type BACKGROUND
PMID: 17450181 (View on PubMed)

Matthay KK, Seeger RC, Reynolds CP, Stram DO, O'Leary MC, Harris RE, Selch M, Atkinson JB, Haase GM, Ramsay NK. Allogeneic versus autologous purged bone marrow transplantation for neuroblastoma: a report from the Childrens Cancer Group. J Clin Oncol. 1994 Nov;12(11):2382-9. doi: 10.1200/JCO.1994.12.11.2382.

Reference Type BACKGROUND
PMID: 7964954 (View on PubMed)

Ladenstein R, Lasset C, Hartmann O, Klingebiel T, Bouffet E, Gadner H, Paolucci P, Burdach S, Chauvin F, Pinkerton R, et al. Comparison of auto versus allografting as consolidation of primary treatments in advanced neuroblastoma over one year of age at diagnosis: report from the European Group for Bone Marrow Transplantation. Bone Marrow Transplant. 1994 Jul;14(1):37-46.

Reference Type BACKGROUND
PMID: 7951119 (View on PubMed)

Yi ES, Son MH, Hyun JK, Cho HW, Ju HY, Lee JW, Yoo KH, Sung KW, Koo HH. Predictors of survival in patients with high-risk neuroblastoma who failed tandem high-dose chemotherapy and autologous stem cell transplantation. Pediatr Blood Cancer. 2020 Feb;67(2):e28066. doi: 10.1002/pbc.28066. Epub 2019 Nov 17.

Reference Type BACKGROUND
PMID: 31736249 (View on PubMed)

Haghiri S, Fayech C, Mansouri I, Dufour C, Pasqualini C, Bolle S, Rivollet S, Dumas A, Boumaraf A, Belhout A, Journy N, Souchard V, Vu-Bezin G, Veres C, Haddy N, De Vathaire F, Valteau-Couanet D, Fresneau B. Long-term follow-up of high-risk neuroblastoma survivors treated with high-dose chemotherapy and stem cell transplantation rescue. Bone Marrow Transplant. 2021 Aug;56(8):1984-1997. doi: 10.1038/s41409-021-01258-1. Epub 2021 Apr 6.

Reference Type BACKGROUND
PMID: 33824435 (View on PubMed)

Park JR, Kreissman SG, London WB, Naranjo A, Cohn SL, Hogarty MD, Tenney SC, Haas-Kogan D, Shaw PJ, Kraveka JM, Roberts SS, Geiger JD, Doski JJ, Voss SD, Maris JM, Grupp SA, Diller L. Effect of Tandem Autologous Stem Cell Transplant vs Single Transplant on Event-Free Survival in Patients With High-Risk Neuroblastoma: A Randomized Clinical Trial. JAMA. 2019 Aug 27;322(8):746-755. doi: 10.1001/jama.2019.11642.

Reference Type BACKGROUND
PMID: 31454045 (View on PubMed)

Milano F, Gooley T, Wood B, Woolfrey A, Flowers ME, Doney K, Witherspoon R, Mielcarek M, Deeg JH, Sorror M, Dahlberg A, Sandmaier BM, Salit R, Petersdorf E, Appelbaum FR, Delaney C. Cord-Blood Transplantation in Patients with Minimal Residual Disease. N Engl J Med. 2016 Sep 8;375(10):944-53. doi: 10.1056/NEJMoa1602074.

Reference Type BACKGROUND
PMID: 27602666 (View on PubMed)

Chen YH, Xu LP, Liu DH, Chen H, Zhang XH, Han W, Wang FR, Wang JZ, Wang Y, Huang XJ, Liu KY. Comparative outcomes between cord blood transplantation and bone marrow or peripheral blood stem cell transplantation from unrelated donors in patients with hematologic malignancies: a single-institute analysis. Chin Med J (Engl). 2013 Jul;126(13):2499-503.

Reference Type BACKGROUND
PMID: 23823825 (View on PubMed)

Eapen M, Rubinstein P, Zhang MJ, Stevens C, Kurtzberg J, Scaradavou A, Loberiza FR, Champlin RE, Klein JP, Horowitz MM, Wagner JE. Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet. 2007 Jun 9;369(9577):1947-54. doi: 10.1016/S0140-6736(07)60915-5.

Reference Type BACKGROUND
PMID: 17560447 (View on PubMed)

Rowinsky EK, Grochow LB, Hendricks CB, Ettinger DS, Forastiere AA, Hurowitz LA, McGuire WP, Sartorius SE, Lubejko BG, Kaufmann SH, et al. Phase I and pharmacologic study of topotecan: a novel topoisomerase I inhibitor. J Clin Oncol. 1992 Apr;10(4):647-56. doi: 10.1200/JCO.1992.10.4.647.

Reference Type BACKGROUND
PMID: 1312588 (View on PubMed)

Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D, Mosseri V, Simon T, Garaventa A, Castel V, Matthay KK; INRG Task Force. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009 Jan 10;27(2):289-97. doi: 10.1200/JCO.2008.16.6785. Epub 2008 Dec 1.

Reference Type BACKGROUND
PMID: 19047291 (View on PubMed)

Sottile F, Gnemmi I, Cantilena S, D'Acunto WC, Sala A. A chemical screen identifies the chemotherapeutic drug topotecan as a specific inhibitor of the B-MYB/MYCN axis in neuroblastoma. Oncotarget. 2012 May;3(5):535-45. doi: 10.18632/oncotarget.498.

Reference Type BACKGROUND
PMID: 22619121 (View on PubMed)

Rujkijyanont P, Photia A, Traivaree C, Monsereenusorn C, Anurathapan U, Seksarn P, Sosothikul D, Techavichit P, Sanpakit K, Phuakpet K, Wiangnon S, Chotsampancharoen T, Chainansamit SO, Kanjanapongkul S, Meekaewkunchorn A, Hongeng S. Clinical outcomes and prognostic factors to predict treatment response in high risk neuroblastoma patients receiving topotecan and cyclophosphamide containing induction regimen: a prospective multicenter study. BMC Cancer. 2019 Oct 16;19(1):961. doi: 10.1186/s12885-019-6186-z.

Reference Type BACKGROUND
PMID: 31619207 (View on PubMed)

London WB, Frantz CN, Campbell LA, Seeger RC, Brumback BA, Cohn SL, Matthay KK, Castleberry RP, Diller L. Phase II randomized comparison of topotecan plus cyclophosphamide versus topotecan alone in children with recurrent or refractory neuroblastoma: a Children's Oncology Group study. J Clin Oncol. 2010 Aug 20;28(24):3808-15. doi: 10.1200/JCO.2009.27.5016. Epub 2010 Jul 26.

Reference Type BACKGROUND
PMID: 20660830 (View on PubMed)

Kasow KA, Stewart CF, Barfield RC, Wright NL, Li C, Srivastava DK, Leung W, Horwitz EM, Bowman LC, Handgretinger R, Hale GA. A phase I/II study of CY and topotecan in patients with high-risk malignancies undergoing autologous hematopoietic cell transplantation: the St Jude long-term follow-up. Bone Marrow Transplant. 2012 Nov;47(11):1448-54. doi: 10.1038/bmt.2012.51. Epub 2012 Mar 19.

Reference Type BACKGROUND
PMID: 22426752 (View on PubMed)

Philip T, Ladenstein R, Lasset C, Hartmann O, Zucker JM, Pinkerton R, Pearson AD, Klingebiel T, Garaventa A, Kremens B, Bernard JL, Rosti G, Chauvin F. 1070 myeloablative megatherapy procedures followed by stem cell rescue for neuroblastoma: 17 years of European experience and conclusions. European Group for Blood and Marrow Transplant Registry Solid Tumour Working Party. Eur J Cancer. 1997 Oct;33(12):2130-5. doi: 10.1016/s0959-8049(97)00324-9.

Reference Type BACKGROUND
PMID: 9516868 (View on PubMed)

Kreissman SG, Seeger RC, Matthay KK, London WB, Sposto R, Grupp SA, Haas-Kogan DA, Laquaglia MP, Yu AL, Diller L, Buxton A, Park JR, Cohn SL, Maris JM, Reynolds CP, Villablanca JG. Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (COG A3973): a randomised phase 3 trial. Lancet Oncol. 2013 Sep;14(10):999-1008. doi: 10.1016/S1470-2045(13)70309-7. Epub 2013 Jul 25.

Reference Type BACKGROUND
PMID: 23890779 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

2021-KY-126

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Therapy for Children With Advanced Stage Neuroblastoma
NCT01857934 ACTIVE_NOT_RECRUITING PHASE2