Single-dose Intravenous Iron Therapy for Anemia After Orthopaedic Trauma
NCT ID: NCT05292001
Last Updated: 2025-08-08
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
PHASE4
150 participants
INTERVENTIONAL
2022-06-01
2026-05-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Preoperative Intravenous Iron to Treat Anaemia in Major Surgery
NCT01692418
Intravenous Iron Supplement to Prevent Postoperative Delirium After Hip Fracture Surgery
NCT05429749
ORthopaedic Trauma Anemia With Conservative Versus Liberal Transfusion
NCT02972593
Intravenous Ferric Carboxymaltose (Ferinject) in Patients Undergoing Orthopaedic Surgery
NCT01345968
Accelerated Recovery for Total Knee Replacement Surgery With Preoperative Intravenous Iron Combined With Human Erythropoietin for Rapid Hematopoietic Mobilization to Prevent Postoperative Anemia
NCT05911438
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
QUADRUPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Treatment
Single infusion of low molecular weight Iron Dextran
Iron-Dextran Complex Injection [InFed]
single 1000mg dose
Placebo
Single infusion of normal saline
Saline Placebo
Normal saline
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Iron-Dextran Complex Injection [InFed]
single 1000mg dose
Saline Placebo
Normal saline
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Acute blood loss anemia as defined by hemoglobin concentration between 7.0-11.0g/dL within seven days post-operatively from definitive fracture stabilization during the hospital admission
Exclusion Criteria
2. Active hemorrhage requiring greater than two units (whole blood or pRBCs) transfused perioperatively
3. 1\. Multiple planned operative procedures during the trauma admission, excluding orthopaedic staged procedures for the fracture meeting inclusion criterion one (such as temporizing external fixator application and washout for open fracture) in which subjects otherwise meet qualifications for enrollment after definitive stabilization
4. Pre-existing hematologic or coagulation disorder (e.g., thalassemia, sickle cell disease, hemophilia, von Willibrand's disease, or myeloproliferative disease)
5. Diagnosis of chronic kidney disease and/or chronic liver disease
6. Known infection, inflammatory condition (e.g., systemic lupus erythematosus, rheumatoid arthritis, and ankylosing spondylitis), or malignancy
7. Pregnancy
8. Iron overload (defined as serum ferritin concentration ≥ 1,000ng/mL, serum iron concentration \> 160μg/ dL, or serum transferrin saturation ≥ 50%) or any condition associated with iron overload (e.g., hemochromatosis and aceruloplasminemia)
9. Patients that are tenets of the Jehovah's Witness faith
10. Vulnerable populations including pediatric patients, geriatric populations 90 or older, incarcerated individuals, those unable to provide informed consent
11. Inability to refrain from oral iron supplementation during study period
12. Current or recent (within 30 days) use of immunosuppressive agents
13. Use of any intravenous iron therapy or recombinant human erythropoietin formulation within the previous 30 days
18 Years
89 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Collins Medical Trust
OTHER
Medical Research Foundation
OTHER
Oregon Health and Science University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Zachary Working
Director of Orthopaedic Trauma, Assistant Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Zachary M Working, MD
Role: PRINCIPAL_INVESTIGATOR
Oregon Health and Science University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Oregon Health & Science University
Portland, Oregon, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Shanbhag SP, Solano MA, Botros MA, Khanuja HS. Treating Preoperative Anemia to Improve Patient Outcomes After Orthopaedic Surgery. J Am Acad Orthop Surg. 2019 Dec 15;27(24):e1077-e1085. doi: 10.5435/JAAOS-D-18-00810.
Theusinger OM, Leyvraz PF, Schanz U, Seifert B, Spahn DR. Treatment of iron deficiency anemia in orthopedic surgery with intravenous iron: efficacy and limits: a prospective study. Anesthesiology. 2007 Dec;107(6):923-7. doi: 10.1097/01.anes.0000291441.10704.82.
Spahn DR. Anemia and patient blood management in hip and knee surgery: a systematic review of the literature. Anesthesiology. 2010 Aug;113(2):482-95. doi: 10.1097/ALN.0b013e3181e08e97.
Munoz M, Garcia-Erce JA, Cuenca J, Bisbe E, Naveira E; AWGE (Spanish Anaemia Working Group). On the role of iron therapy for reducing allogeneic blood transfusion in orthopaedic surgery. Blood Transfus. 2012 Jan;10(1):8-22. doi: 10.2450/2011.0061-11. Epub 2011 Nov 30. No abstract available.
Cuenca J, Garcia-Erce JA, Munoz M, Izuel M, Martinez AA, Herrera A. Patients with pertrochanteric hip fracture may benefit from preoperative intravenous iron therapy: a pilot study. Transfusion. 2004 Oct;44(10):1447-52. doi: 10.1111/j.1537-2995.2004.04088.x.
Garcia-Erce JA, Cuenca J, Munoz M, Izuel M, Martinez AA, Herrera A, Solano VM, Martinez F. Perioperative stimulation of erythropoiesis with intravenous iron and erythropoietin reduces transfusion requirements in patients with hip fracture. A prospective observational study. Vox Sang. 2005 May;88(4):235-43. doi: 10.1111/j.1423-0410.2005.00627.x.
Shin HW, Park JJ, Kim HJ, You HS, Choi SU, Lee MJ. Efficacy of perioperative intravenous iron therapy for transfusion in orthopedic surgery: A systematic review and meta-analysis. PLoS One. 2019 May 6;14(5):e0215427. doi: 10.1371/journal.pone.0215427. eCollection 2019.
Cappellini MD, Musallam KM, Taher AT. Iron deficiency anaemia revisited. J Intern Med. 2020 Feb;287(2):153-170. doi: 10.1111/joim.13004. Epub 2019 Nov 12.
Holm C, Thomsen LL, Norgaard A, Langhoff-Roos J. Single-dose intravenous iron infusion or oral iron for treatment of fatigue after postpartum haemorrhage: a randomized controlled trial. Vox Sang. 2017 Apr;112(3):219-228. doi: 10.1111/vox.12477. Epub 2017 Feb 15.
Strauss WE, Auerbach M. Health-related quality of life in patients with iron deficiency anemia: impact of treatment with intravenous iron. Patient Relat Outcome Meas. 2018 Aug 27;9:285-298. doi: 10.2147/PROM.S169653. eCollection 2018.
Crichlow RJ, Andres PL, Morrison SM, Haley SM, Vrahas MS. Depression in orthopaedic trauma patients. Prevalence and severity. J Bone Joint Surg Am. 2006 Sep;88(9):1927-33. doi: 10.2106/JBJS.D.02604.
Sharif PS, Abdollahi M. The role of platelets in bone remodeling. Inflamm Allergy Drug Targets. 2010 Dec;9(5):393-9. doi: 10.2174/187152810793938044.
IRONMAN Investigators; Litton E, Baker S, Erber WN, Farmer S, Ferrier J, French C, Gummer J, Hawkins D, Higgins A, Hofmann A, De Keulenaer B, McMorrow J, Olynyk JK, Richards T, Towler S, Trengove R, Webb S; Australian and New Zealand Intensive Care Society Clinical Trials Group. Intravenous iron or placebo for anaemia in intensive care: the IRONMAN multicentre randomized blinded trial : A randomized trial of IV iron in critical illness. Intensive Care Med. 2016 Nov;42(11):1715-1722. doi: 10.1007/s00134-016-4465-6. Epub 2016 Sep 30.
DeLoughery TG. Safety of Oral and Intravenous Iron. Acta Haematol. 2019;142(1):8-12. doi: 10.1159/000496966. Epub 2019 Apr 10.
Avni T, Bieber A, Grossman A, Green H, Leibovici L, Gafter-Gvili A. The safety of intravenous iron preparations: systematic review and meta-analysis. Mayo Clin Proc. 2015 Jan;90(1):12-23. doi: 10.1016/j.mayocp.2014.10.007. Epub 2014 Oct 30.
Sultan P, Bampoe S, Shah R, Guo N, Estes J, Stave C, Goodnough LT, Halpern S, Butwick AJ. Oral vs intravenous iron therapy for postpartum anemia: a systematic review and meta-analysis. Am J Obstet Gynecol. 2019 Jul;221(1):19-29.e3. doi: 10.1016/j.ajog.2018.12.016. Epub 2018 Dec 19.
Serrano-Trenas JA, Ugalde PF, Cabello LM, Chofles LC, Lazaro PS, Benitez PC. Role of perioperative intravenous iron therapy in elderly hip fracture patients: a single-center randomized controlled trial. Transfusion. 2011 Jan;51(1):97-104. doi: 10.1111/j.1537-2995.2010.02769.x.
Pieracci FM, Stovall RT, Jaouen B, Rodil M, Cappa A, Burlew CC, Holena DN, Maier R, Berry S, Jurkovich J, Moore EE. A multicenter, randomized clinical trial of IV iron supplementation for anemia of traumatic critical illness*. Crit Care Med. 2014 Sep;42(9):2048-57. doi: 10.1097/CCM.0000000000000408.
Rampton D, Folkersen J, Fishbane S, Hedenus M, Howaldt S, Locatelli F, Patni S, Szebeni J, Weiss G. Hypersensitivity reactions to intravenous iron: guidance for risk minimization and management. Haematologica. 2014 Nov;99(11):1671-6. doi: 10.3324/haematol.2014.111492.
Brodke DJ, Saltzman CL, Brodke DS. PROMIS for Orthopaedic Outcomes Measurement. J Am Acad Orthop Surg. 2016 Nov;24(11):744-749. doi: 10.5435/JAAOS-D-15-00404.
Vincent HK, Hagen JE, Zdziarski-Horodyski LA, Patrick M, Sadasivan KK, Guenther R, Vasilopoulos T, Sharififar S, Horodyski M. Patient-Reported Outcomes Measurement Information System Outcome Measures and Mental Health in Orthopaedic Trauma Patients During Early Recovery. J Orthop Trauma. 2018 Sep;32(9):467-473. doi: 10.1097/BOT.0000000000001245.
Peterson DF, McKibben NS, Hutchison CE, Lancaster K, Yang CJ, Dekeyser GJ, Friess DM, Schreiber MA, Willett NJ, Shatzel JJ, Aslan JE, Working ZM. Role of single-dose intravenous iron therapy for the treatment of anaemia after orthopaedic trauma: protocol for a pilot randomised controlled trial. BMJ Open. 2023 Mar 21;13(3):e069070. doi: 10.1136/bmjopen-2022-069070.
Related Links
Access external resources that provide additional context or updates about the study.
INFeD prescribing information
PROMIS HealthMeasures website
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
22441
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.