Dietary Oxysterols and β-Cell Function Among African Americans
NCT ID: NCT05072587
Last Updated: 2021-10-11
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
24 participants
INTERVENTIONAL
2021-07-01
2022-10-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Dietary oxysterols can harm the cells that produce insulin and decrease insulin production.
This pilot study seeks to determine if removing dietary oxysterols with a plant-based diet will improve insulin production and decrease the risk of type 2 diabetes among AAs.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Effect of Vitamin D Supplementation on Glucose Metabolism in Non-Diabetic African American Adults
NCT01141192
Return of First-phase Insulin Secretion in Type 2 Diabetes is Associated With Depletion of Pancreas Lipid
NCT03430310
Intramuscular Lipid and Insulin Action:Ethnic Aspects
NCT00726908
The Effects of Potassium on Glucose Metabolism in African Americans
NCT02236598
Vitamin D Supplementation on Cardiovascular Risk Factors
NCT01412710
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
PREVENTION
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Group A - Standard ADA dietary guidelines (SADA)
Participants in this group will be given prepared meals based on standard ADA dietary guidelines for 12 weeks.
Standard ADA Diet (SADA)
This group will be given 3 prepared meals a day with macronutrient content: 60% of calories from carbohydrates, 15% protein, and 25% fat. Calories: 25 kcal/kg ideal body weight (IBW). The goal is weight maintenance, but weight loss may occur. 1-5% weight loss will be acceptable and not deemed a potential confounder. Participants will be screened for food allergies and intolerances prior to receiving their research diets. All meals will include culturally familiar foods to enhance adherence. The dietary intervention will be conducted over 4 3-month periods (12 months). Meals will be packaged labeled and distributed to participants once per week. Participants will consume their meals at home.
Group B - Plant Based ADA diet with no oxysterols (PB-ADAØ).
Participants in this group will be given prepared meals based on ADA guidelines but with no dietary cholesterol oxides/oxysterols - Plant-based ADA diet
Plant-based diet with no oxysterols
This group will be given 3 prepared plant-based meals a day with macronutrient content: 60% of calories from carbohydrates, 15% protein, and 25% fat. Calories: 25 kcal/kg ideal body weight (IBW). The goal is weight maintenance, but weight loss may occur. 1-5% weight loss will be acceptable and not deemed a potential confounder. Participants will be screened for food allergies and intolerances prior to receiving their research diets. All meals will include culturally familiar foods to enhance adherence. The dietary intervention will be conducted over 4 3-month periods (12 months). Meals will be packaged labeled and distributed to participants once per week. Participants will consume their meals at home.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Plant-based diet with no oxysterols
This group will be given 3 prepared plant-based meals a day with macronutrient content: 60% of calories from carbohydrates, 15% protein, and 25% fat. Calories: 25 kcal/kg ideal body weight (IBW). The goal is weight maintenance, but weight loss may occur. 1-5% weight loss will be acceptable and not deemed a potential confounder. Participants will be screened for food allergies and intolerances prior to receiving their research diets. All meals will include culturally familiar foods to enhance adherence. The dietary intervention will be conducted over 4 3-month periods (12 months). Meals will be packaged labeled and distributed to participants once per week. Participants will consume their meals at home.
Standard ADA Diet (SADA)
This group will be given 3 prepared meals a day with macronutrient content: 60% of calories from carbohydrates, 15% protein, and 25% fat. Calories: 25 kcal/kg ideal body weight (IBW). The goal is weight maintenance, but weight loss may occur. 1-5% weight loss will be acceptable and not deemed a potential confounder. Participants will be screened for food allergies and intolerances prior to receiving their research diets. All meals will include culturally familiar foods to enhance adherence. The dietary intervention will be conducted over 4 3-month periods (12 months). Meals will be packaged labeled and distributed to participants once per week. Participants will consume their meals at home.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Self-identified AA: This group has higher rates of T2D than the general population.
3. Adults over18 years old: This age group is at higher risk of T2D.
4. Ability to read, understand and communicate effectively in English: All information about the study and instructions for the study protocol will be in English.
5. Committed to eating the allocated study diet for 12 weeks: This is important to ensure that the study protocol is followed, and the data collected from participants is meaningful/valid.
6. On stable medication dosages for the three months prior to recruitment: This is to avoid bias or confounding with new medications or dosages changes.
7. Able to safely store a week's supply of prepared meals: Participants will receive packages of prepared food that has to stored and last them for the following week.
8. Mentally competent and able to follow the study protocol and provide informed consent
9. Currently eating the Standard American diet: The baseline diet of the participants will be assessed and correlated their baseline serum 7-KC levels and HOMA2 Index of β-cell function.
Exclusion Criteria
2. Be taking statin medications or any other cholesterol lowering drugs or supplements: These medications may artificially lower serum cholesterol and oxysterol levels.
3. Be currently on a vegan, vegetarian, or any type of plant-based diet for the 3 months prior to recruitment: Participants currently on these diets may not see significant changes on the dietary interventions of the study protocol.
4. Be a current smoker: Smoking is a risk factor for oxidative stress - this could be an effect modifier or a confounding faction for this study.
5. Be on medications or supplements to lower blood glucose or treat diabetes: This will be an effect modifier or confounding factor. We will not know the effect of the dietary intervention if the participants are also on medications for diabetes.
6. Be status post blood transfusion in the previous 3 months: This will interfere with the test for HbA1c levels. This is one of our primary outcomes:
7. Have a hemoglobin or any other blood disorder: This will interfere with the test for HBA1c which measures glycation of hemoglobin in red blood cells.:
8. Be taking biotin supplements: This interferes with the test for fasting C-Peptide.
9. Be on dialysis or have any stage of renal failure: Dialysis patients need special diets and more intense monitoring than is planned for the participants in this study.
10. Have food allergies: Participants will be screened for food allergies. This is to prevent food sensitivities or adverse reactions to the prepared meals in the study.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Emory University
OTHER
Morehouse School of Medicine
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Jennifer Rooke, MD, MPH
Assistant Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Jennifer Rooke
Role: PRINCIPAL_INVESTIGATOR
Morehouse School of Medicine
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Morehouse School of Medicine
Atlanta, Georgia, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Diabetes and African Americans, CDC 2016. Summary Health Statistics: National Health Interview Survey: 2014. US Department of Health and Human Services, Office of Minority Health website. http://www.cdc.gov/nchs/nhis/shs/tables.htm
Benoit SR, Hora I, Albright AL, Gregg EW. New directions in incidence and prevalence of diagnosed diabetes in the USA. BMJ Open Diabetes Res Care. 2019 May 28;7(1):e000657. doi: 10.1136/bmjdrc-2019-000657. eCollection 2019.
Staimez LR, Rhee MK, Deng Y, Safo SE, Butler SM, Legvold BT, Jackson SL, Ford CN, Wilson PWF, Long Q, Phillips LS. Retinopathy develops at similar glucose levels but higher HbA1c levels in people with black African ancestry compared to white European ancestry: evidence for the need to individualize HbA1c interpretation. Diabet Med. 2020 Jun;37(6):1049-1057. doi: 10.1111/dme.14289. Epub 2020 Apr 25.
Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S. Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab. 2017 Jul 8;6(9):943-957. doi: 10.1016/j.molmet.2017.06.019. eCollection 2017 Sep.
Boughton CK, Munro N, Whyte M. Targeting beta-cell preservation in the management of type 2 diabetes. British Journal of Diabetes and Vascular Disease. Published online 2017. doi:10.15277/bjd.2017.148
Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003 Jan;52(1):102-10. doi: 10.2337/diabetes.52.1.102.
Saisho Y. Importance of Beta Cell Function for the Treatment of Type 2 Diabetes. J Clin Med. 2014 Aug 14;3(3):923-43. doi: 10.3390/jcm3030923.
Saisho Y. An emerging new concept for the management of type 2 diabetes with a paradigm shift from the glucose-centric to beta cell-centric concept of diabetes - an Asian perspective. Expert Opin Pharmacother. 2020 Sep;21(13):1565-1578. doi: 10.1080/14656566.2020.1776262. Epub 2020 Jun 10.
RISE Consortium. Lack of Durable Improvements in beta-Cell Function Following Withdrawal of Pharmacological Interventions in Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes. Diabetes Care. 2019 Sep;42(9):1742-1751. doi: 10.2337/dc19-0556. Epub 2019 Jun 9.
Standl E. The importance of beta-cell management in type 2 diabetes. Int J Clin Pract Suppl. 2007 Jun;(153):10-9. doi: 10.1111/j.1742-1241.2007.01360.x.
Kahleova H, Tura A, Hill M, Holubkov R, Barnard ND. A Plant-Based Dietary Intervention Improves Beta-Cell Function and Insulin Resistance in Overweight Adults: A 16-Week Randomized Clinical Trial. Nutrients. 2018 Feb 9;10(2):189. doi: 10.3390/nu10020189.
Zhyzhneuskaya SV, Al-Mrabeh A, Peters C, Barnes A, Aribisala B, Hollingsworth KG, McConnachie A, Sattar N, Lean MEJ, Taylor R. Time Course of Normalization of Functional beta-Cell Capacity in the Diabetes Remission Clinical Trial After Weight Loss in Type 2 Diabetes. Diabetes Care. 2020 Apr;43(4):813-820. doi: 10.2337/dc19-0371. Epub 2020 Feb 14.
Lean MEJ, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, Peters C, Zhyzhneuskaya S, Al-Mrabeh A, Hollingsworth KG, Rodrigues AM, Rehackova L, Adamson AJ, Sniehotta FF, Mathers JC, Ross HM, McIlvenna Y, Welsh P, Kean S, Ford I, McConnachie A, Messow CM, Sattar N, Taylor R. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019 May;7(5):344-355. doi: 10.1016/S2213-8587(19)30068-3. Epub 2019 Mar 6.
Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002 Feb 7;346(6):393-403. doi: 10.1056/NEJMoa012512.
Davis BC, Jamshed H, Peterson CM, Sabate J, Harris RD, Koratkar R, Spence JW, Kelly JH Jr. An Intensive Lifestyle Intervention to Treat Type 2 Diabetes in the Republic of the Marshall Islands: Protocol for a Randomized Controlled Trial. Front Nutr. 2019 Jun 5;6:79. doi: 10.3389/fnut.2019.00079. eCollection 2019.
Glechner A, Keuchel L, Affengruber L, Titscher V, Sommer I, Matyas N, Wagner G, Kien C, Klerings I, Gartlehner G. Effects of lifestyle changes on adults with prediabetes: A systematic review and meta-analysis. Prim Care Diabetes. 2018 Oct;12(5):393-408. doi: 10.1016/j.pcd.2018.07.003. Epub 2018 Aug 1.
Tonstad S, Stewart K, Oda K, Batech M, Herring RP, Fraser GE. Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr Metab Cardiovasc Dis. 2013 Apr;23(4):292-9. doi: 10.1016/j.numecd.2011.07.004. Epub 2011 Oct 7.
Abderrahmani A, Niederhauser G, Favre D, Abdelli S, Ferdaoussi M, Yang JY, Regazzi R, Widmann C, Waeber G. Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells. Diabetologia. 2007 Jun;50(6):1304-14. doi: 10.1007/s00125-007-0642-z. Epub 2007 Apr 17.
Plaisance V, Brajkovic S, Tenenbaum M, Favre D, Ezanno H, Bonnefond A, Bonner C, Gmyr V, Kerr-Conte J, Gauthier BR, Widmann C, Waeber G, Pattou F, Froguel P, Abderrahmani A. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL. PLoS One. 2016 Sep 16;11(9):e0163046. doi: 10.1371/journal.pone.0163046. eCollection 2016.
Lee DH. Lipoproteins and beta-Cell Functions: From Basic to Clinical Data. Diabetes Metab J. 2014 Aug;38(4):274-7. doi: 10.4093/dmj.2014.38.4.274. No abstract available.
Nakhjavani M, Khalilzadeh O, Khajeali L, Esteghamati A, Morteza A, Jamali A, Dadkhahipour S. Serum oxidized-LDL is associated with diabetes duration independent of maintaining optimized levels of LDL-cholesterol. Lipids. 2010 Apr;45(4):321-7. doi: 10.1007/s11745-010-3401-8. Epub 2010 Mar 12.
Wang J, Wang H. Oxidative Stress in Pancreatic Beta Cell Regeneration. Oxid Med Cell Longev. 2017;2017:1930261. doi: 10.1155/2017/1930261. Epub 2017 Aug 3.
Samadi A, Gurlek A, Sendur SN, Karahan S, Akbiyik F, Lay I. Oxysterol species: reliable markers of oxidative stress in diabetes mellitus. J Endocrinol Invest. 2019 Jan;42(1):7-17. doi: 10.1007/s40618-018-0873-5. Epub 2018 Mar 21.
Ferderbar S, Pereira EC, Apolinario E, Bertolami MC, Faludi A, Monte O, Calliari LE, Sales JE, Gagliardi AR, Xavier HT, Abdalla DS. Cholesterol oxides as biomarkers of oxidative stress in type 1 and type 2 diabetes mellitus. Diabetes Metab Res Rev. 2007 Jan;23(1):35-42. doi: 10.1002/dmrr.645.
Maldonado-Pereira L, Schweiss M, Barnaba C, Medina-Meza IG. The role of cholesterol oxidation products in food toxicity. Food Chem Toxicol. 2018 Aug;118:908-939. doi: 10.1016/j.fct.2018.05.059. Epub 2018 Jun 27.
J. V. Vicente S, Sampaio G, Ferrari C, Torres E. Oxidation of Cholesterol in Foods and Its Importance for Human Health. Vol 28.; 2012. doi:10.1080/87559129.2011.594972
Lyons MA, Samman S, Gatto L, Brown AJ. Rapid hepatic metabolism of 7-ketocholesterol in vivo: implications for dietary oxysterols. J Lipid Res. 1999 Oct;40(10):1846-57.
Staprans I, Pan XM, Rapp JH, Feingold KR. The role of dietary oxidized cholesterol and oxidized fatty acids in the development of atherosclerosis. Mol Nutr Food Res. 2005 Nov;49(11):1075-82. doi: 10.1002/mnfr.200500063.
Morel DW, Lin CY. Cellular biochemistry of oxysterols derived from the diet or oxidation in vivo. Journal of Nutritional Biochemistry. Published online 1996. doi:10.1016/0955-2863(96)00101-5
Linseisen J, Wolfram G. Absorption of cholesterol oxidation products from ordinary foodstuff in humans. Ann Nutr Metab. 1998;42(4):221-30. doi: 10.1159/000012737.
Zmyslowski A, Szterk A. Oxysterols as a biomarker in diseases. Clin Chim Acta. 2019 Apr;491:103-113. doi: 10.1016/j.cca.2019.01.022. Epub 2019 Jan 24.
Endo K, Oyama T, Saiki A, Ban N, Ohira M, Koide N, Murano T, Watanabe H, Nishii M, Miura M, Sekine K, Miyashita Y, Shirai K. Determination of serum 7-ketocholesterol concentrations and their relationships with coronary multiple risks in diabetes mellitus. Diabetes Res Clin Pract. 2008 Apr;80(1):63-8. doi: 10.1016/j.diabres.2007.10.023. Epub 2008 Jan 22.
Indaram M, Ma W, Zhao L, Fariss RN, Rodriguez IR, Wong WT. 7-Ketocholesterol increases retinal microglial migration, activation, and angiogenicity: a potential pathogenic mechanism underlying age-related macular degeneration. Sci Rep. 2015 Mar 16;5:9144. doi: 10.1038/srep09144.
Fu D, Wu M, Zhang J, Du M, Yang S, Hammad SM, Wilson K, Chen J, Lyons TJ. Mechanisms of modified LDL-induced pericyte loss and retinal injury in diabetic retinopathy. Diabetologia. 2012 Nov;55(11):3128-40. doi: 10.1007/s00125-012-2692-0. Epub 2012 Aug 31.
Weigel TK, Kulas JA, Ferris HA. Oxidized cholesterol species as signaling molecules in the brain: diabetes and Alzheimer's disease. Neuronal Signal. 2019 Dec;3(4):NS20190068. doi: 10.1042/NS20190068. Epub 2019 Nov 28.
Odegaard AO, Jacobs DR Jr, Sanchez OA, Goff DC Jr, Reiner AP, Gross MD. Oxidative stress, inflammation, endothelial dysfunction and incidence of type 2 diabetes. Cardiovasc Diabetol. 2016 Mar 24;15:51. doi: 10.1186/s12933-016-0369-6.
Cnop M, Hannaert JC, Grupping AY, Pipeleers DG. Low density lipoprotein can cause death of islet beta-cells by its cellular uptake and oxidative modification. Endocrinology. 2002 Sep;143(9):3449-53. doi: 10.1210/en.2002-220273.
Anderson A, Campo A, Fulton E, Corwin A, Jerome WG 3rd, O'Connor MS. 7-Ketocholesterol in disease and aging. Redox Biol. 2020 Jan;29:101380. doi: 10.1016/j.redox.2019.101380. Epub 2019 Nov 14.
Murakami H, Tamasawa N, Matsui J, Yasujima M, Suda T. Plasma oxysterols and tocopherol in patients with diabetes mellitus and hyperlipidemia. Lipids. 2000 Mar;35(3):333-8. doi: 10.1007/s11745-000-0530-1.
Rodriguez-Estrada MT, Garcia-Llatas G, Lagarda MJ. 7-Ketocholesterol as marker of cholesterol oxidation in model and food systems: when and how. Biochem Biophys Res Commun. 2014 Apr 11;446(3):792-7. doi: 10.1016/j.bbrc.2014.02.098. Epub 2014 Feb 28.
Birlouez-Aragon I, Saavedra G, Tessier FJ, Galinier A, Ait-Ameur L, Lacoste F, Niamba CN, Alt N, Somoza V, Lecerf JM. A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. Am J Clin Nutr. 2010 May;91(5):1220-6. doi: 10.3945/ajcn.2009.28737. Epub 2010 Mar 24.
Economic Research Service. Commodity consumption by population characteristics. United States Department of Agriculture. Published 2012. http://www.ers.usda.gov/data-products/commodity-consumption-by-population-characteristics.aspx
Kahleova H, Fleeman R, Hlozkova A, Holubkov R, Barnard ND. A plant-based diet in overweight individuals in a 16-week randomized clinical trial: metabolic benefits of plant protein. Nutr Diabetes. 2018 Nov 2;8(1):58. doi: 10.1038/s41387-018-0067-4.
Report NDS. National Diabetes Statistics Report, 2020. National Diabetes Statistics Report. Published online 2020.
Lin J, Thompson TJ, Cheng YJ, Zhuo X, Zhang P, Gregg E, Rolka DB. Projection of the future diabetes burden in the United States through 2060. Popul Health Metr. 2018 Jun 15;16(1):9. doi: 10.1186/s12963-018-0166-4.
Mehta SP, Jarvis A, Standifer D, Warnimont C. International physical activity questionnaire. Critical Reviews in Physical and Rehabilitation Medicine. Published online 2018. doi:10.1615/CritRevPhysRehabilMed.2018026180
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
MorehouseSM
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.