Supplementation With L-ornithine But Not L-arginine Increases Density of CD68+ and CD163+ Macrophages in Periodontitis

NCT ID: NCT05042024

Last Updated: 2021-09-17

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

PHASE3

Total Enrollment

75 participants

Study Classification

INTERVENTIONAL

Study Start Date

2017-10-20

Study Completion Date

2018-11-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The aim of the study was to investigate whether oral administration of L-arginine or L-ornithine could modulate local representation density and ratio of macrophages in periodontitis-affected gingiva by using immunohistochemical detection of CD68+ and CD163+ macrophages in biopsies of the gingiva.

The null hypothesis tested was that L-arginine and L-ornithine have no influences on CD68+ and CD163+ macrophages densities when supplementing the treatment of periodontitis.

Materials and methods. 75 individuals with a diagnosis of generalized periodontitis at stages II-III and grade B (38 women and 37 men, 51% and 49%, respectively) were included in the study. Periodontitis was diagnosed by using the criteria of the Classification of Periodontal and Peri-Implant Diseases and Conditions 2017. 25 patients received scaling and root planing only; 25 patients additionally received L-arginine, and 25 - L-ornithine, according to instructions available in Ukraine.

For the immunohistochemical study of paraffin-embedded sections, the gingival biopsy was taken from 5 selected patients per group before treatment and after 1 month. CD68+ (cluster of differentiation 68 positive) and CD163+ cells served as a morphological equivalent of M1, M2 macrophages subpopulations, and their densities were calculated per 10000 μm2. Statistical analysis was performed by adequate power methods.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Study design The present work was the original research study. 75 individuals with a diagnosis of generalized periodontitis at stages II-III and grade B (38 women and 37 men, 51% and 49%, respectively) were included in the study. Periodontitis was diagnosed by using the criteria of the Classification of Periodontal and Peri-Implant Diseases and Conditions 2017. Stage II of periodontitis was diagnosed in the presence of 3 to 4 mm interdental CAL at the site of greatest loss, 4 to maximum 5 mm PPD, the radiographic bone loss at the root coronal third, and no tooth loss due to periodontitis. Stage III was diagnosed in the presence of ≥5 mm interdental CAL, the radiographic bone loss extending to the middle or apical third of the root, ≤4 teeth loss due to periodontitis. In all cases, periodontitis had a generalized pattern (\>30% of teeth involved) and grade B as patterns of the progression, based on indirect evidence (radiographic bone loss expressed as a percentage of root length divided by the age of the subject was from 0.25 to 1.0).

Patients were grouped by stratified randomization into three groups: the SRP Group (patients received scaling and root planing as a full-mouth procedure, n=25); the Arg Group (patients received oral L-arginine aspartate (Yuria-Pharm, Ukraine) at a dose of 1 g t.i.d. for 10 days after SRP, n=25); and the Orn Group (patients received oral L-ornithine aspartate (Farmak, Ukraine) at a dose of 3 g t.i.d. for 15 days after SRP, n=25). We used arginine and ornithine according to instructions for these medicines available for use in Ukraine. During the study, all patients were on a stable diet, without changing their rations and regiments.

For all participants, gender and age were recorded, and periodontal parameters such as periodontal pocket depth (PPD), clinical attachment level (CAL) and bleeding on probing (BoP) measurements were taken from six periodontal sites on all teeth (except for the third molars) by a single calibrated examiner using a manual periodontal probe (dental explorer tool labeled 0106.DT06.CP10, Den Tag, Italy). PPD and CAL were measured to the nearest 1 mm.

All patients were clinically examined before treatment and after 1 month ± 5 days.

Collection of gingival tissue samples For the precise immunohistochemical study, the gingival biopsy of approximately 3x3 mm was excised under local anesthesia before treatment and 1 month later in 5 selected patients per group. Biopsies were obtained in the same time-points, from a single site displaying the deepest pocket around suitable dental and periodontal procedures. Removal of these tissue biopsies did not interfere with the initial treatment plan or influence upon the expected clinical outcomes. After collection, biopsies were fixed in a 4% formalin solution for 24 hr of fixation, dehydrated, and embedded in paraffin.

Immunohistochemistry and antibodies Paraffin sections, 2-3 μm in thickness were deparaffinized and dehydrated. Heat-induced epitope retrieval in citrate buffer, power of hydrogen (pH) 6, was performed by successive heating the slides in the microwave oven, then allowed to cool, rinsed with phosphate-buffered saline (PBS), incubated with blocked reagent, rinsed, and incubated with mouse monoclonal CD68 antibodies (1:30, clone PG-M1, Diagnostic BioSystems, The Hague, The Netherlands) or anti-CD163 (1:100, clone 10D6, Diagnostic BioSystems, The Hague, The Netherlands). Then sections were stained with the 2-steps Mouse/Rabbit PolyVue Plus™ HRP/DAB Detection System (Diagnostic BioSystems, The Hague, The Netherlands), and counterstained with Mayer's haemalaun. PBS was used as a negative control, the lymph node tissue - as a positive control.

Evaluation of immunohistochemical staining CD68+ and CD163+ macrophages (Mφs) were estimated by counting the number of the cells by light microscope ×400 in intensive infiltrative areas, 5 regions from each slice were selected, and all 5 counts were taken for statistics. We counted immunopositive Mφs in the areas of cell infiltration, since they are directly related to inflammation. The number of cells per 10 000 μm2 was calculated as immunopositive cell density. Photos were obtained using the light microscope Axio Lab.A1 (Carl Zeiss, Göttingen, Germany) (×400).

Statistical analysis Small sample size was justified by the expectation of a high effect size, unknown null distribution, and compensated with adequate power non parametric statistics. Precise sample size calculation was not performed.

Means of PPD and CAL were calculated for sites with PD\>4mm (affected sites). Statistical analysis was performed using GraphPad Prism 5 software (GraphPad Software, San Diego, USA) by means of descriptive statistics, chi-square test, one-way ANOVA and nonparametric ANOVA tests for multiple comparisons: Friedman - for dependent variables, Kruskal-Wallis test - for independent variables, with post-hoc analyzing. For descriptive statistics of cells numbers, the percentile ranges were also used because of non-normal distributions. The CD68+/CD163+ ratio was assessed by inter-group t-tests comparisons and Spearman correlation checking. P values of \<0.05 were considered statistically significant in all of the analyses.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Periodontitis

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Patients were grouped by stratified randomization into three groups: the SRP Group (patients received conventional periodontal therapy including scaling and root planing as a full-mouth procedure, n=25); the Arg Group (patients received oral L-arginine aspartate (Yuria-Pharm, Ukraine) at a dose of 1 g t.i.d. for 10 days after conventional periodontal therapy, n=25); and the Orn Group (patients received oral L-ornithine aspartate (Farmak, Ukraine) at a dose of 3 g t.i.d. for 15 days after conventional periodontal therapy, n=25).
Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Open Label

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

the SRP Group

Patients received conventional periodontal therapy including scaling and root planing as a full-mouth procedure, n=25.

Group Type ACTIVE_COMPARATOR

Scaling and root planing

Intervention Type PROCEDURE

Conventional periodontal therapy, non-surgical periodontal therapy

the Arg Group

Patients received oral L-arginine aspartate (Yuria-Pharm, Ukraine) at a dose of 1 g t.i.d. for 10 days after conventional periodontal therapy, n=25.

Group Type EXPERIMENTAL

Scaling and root planing

Intervention Type PROCEDURE

Conventional periodontal therapy, non-surgical periodontal therapy

Oral L-arginine aspartate administration

Intervention Type DRUG

The use of L-arginine aspartate as adjuncts to local conservative treatment (scaling and root planing) of periodontitis to optimize treatment by modulating local macrophage subpopulations

the Orn Group

Patients received oral L-ornithine aspartate (Farmak, Ukraine) at a dose of 3 g t.i.d. for 15 days after conventional periodontal therapy, n=25.

Group Type EXPERIMENTAL

Scaling and root planing

Intervention Type PROCEDURE

Conventional periodontal therapy, non-surgical periodontal therapy

Oral L-ornithine aspartate administration

Intervention Type DRUG

The use of L-ornithine aspartate as adjuncts to local conservative treatment (scaling and root planing) of periodontitis to optimize treatment by modulating local macrophage subpopulations

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Scaling and root planing

Conventional periodontal therapy, non-surgical periodontal therapy

Intervention Type PROCEDURE

Oral L-arginine aspartate administration

The use of L-arginine aspartate as adjuncts to local conservative treatment (scaling and root planing) of periodontitis to optimize treatment by modulating local macrophage subpopulations

Intervention Type DRUG

Oral L-ornithine aspartate administration

The use of L-ornithine aspartate as adjuncts to local conservative treatment (scaling and root planing) of periodontitis to optimize treatment by modulating local macrophage subpopulations

Intervention Type DRUG

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

SRP Oral supplementation with Tivortin® Aspartate (Yuria-Pharm, Ukraine) Oral supplementation with Larnamin (Farmak, Ukraine)

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Presence of periodontitis
* Good general health
* At least 19 remaining teeth
* Written informed consent forms

Exclusion Criteria

* Antibiotics or anti-inflammatory medications use within the preceding 3 months
* Periodontal therapy within the previous 6 months
* Purulent exudation from periodontal pockets
* Pregnancy and breastfeeding
* Presence of severe, uncontrolled (decompensated) diseases of the internal organs, or neuropsychiatric disorders
* Presence of other conditions that determined the inability of the patient to understand the nature and possible consequences of the study
Minimum Eligible Age

25 Years

Maximum Eligible Age

54 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Ukrainian Medical Stomatological Academy

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Igor Kaydashev

Honored Master of Science and Technology of Ukraine, Doctor of Medical Sciences, Professor Vice-Rector for Research and Development

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Igor P Kaydashev, Dr.hab.

Role: PRINCIPAL_INVESTIGATOR

Ukrainian Medical Stomatological Academy

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Ukrainian Medical Stomatological Academy

Poltava, , Ukraine

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Ukraine

References

Explore related publications, articles, or registry entries linked to this study.

Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, Flemmig TF, Garcia R, Giannobile WV, Graziani F, Greenwell H, Herrera D, Kao RT, Kebschull M, Kinane DF, Kirkwood KL, Kocher T, Kornman KS, Kumar PS, Loos BG, Machtei E, Meng H, Mombelli A, Needleman I, Offenbacher S, Seymour GJ, Teles R, Tonetti MS. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018 Jun;45 Suppl 20:S162-S170. doi: 10.1111/jcpe.12946.

Reference Type BACKGROUND
PMID: 29926490 (View on PubMed)

Shinkevich VI, Kaidashev IP. [The role of immune cells factors in the remodeling of gingiva at chronic generalized periodontal disease]. Stomatologiia (Mosk). 2012;91(1):23-7. Russian.

Reference Type BACKGROUND
PMID: 22678603 (View on PubMed)

Zhou LN, Bi CS, Gao LN, An Y, Chen F, Chen FM. Macrophage polarization in human gingival tissue in response to periodontal disease. Oral Dis. 2019 Jan;25(1):265-273. doi: 10.1111/odi.12983. Epub 2018 Oct 12.

Reference Type BACKGROUND
PMID: 30285304 (View on PubMed)

Shynkevych VI, Kaidashev IP. Contribution of macrophage subpopulations to the pathogenesis of chronic periodontitis in humans and perspectives for study. Review of the literature. Zaporozhye medical journal. 2019;21(1): 137-143. doi:10.14739/2310-1210.2019.1.155863.

Reference Type BACKGROUND

Garaicoa-Pazmino C, Fretwurst T, Squarize CH, Berglundh T, Giannobile WV, Larsson L, Castilho RM. Characterization of macrophage polarization in periodontal disease. J Clin Periodontol. 2019 Aug;46(8):830-839. doi: 10.1111/jcpe.13156. Epub 2019 Jun 25.

Reference Type BACKGROUND
PMID: 31152604 (View on PubMed)

Allam JP, Duan Y, Heinemann F, Winter J, Gotz W, Deschner J, Wenghoefer M, Bieber T, Jepsen S, Novak N. IL-23-producing CD68(+) macrophage-like cells predominate within an IL-17-polarized infiltrate in chronic periodontitis lesions. J Clin Periodontol. 2011 Oct;38(10):879-86. doi: 10.1111/j.1600-051X.2011.01752.x. Epub 2011 Aug 31.

Reference Type BACKGROUND
PMID: 21883359 (View on PubMed)

Slots J. Periodontitis: facts, fallacies and the future. Periodontol 2000. 2017 Oct;75(1):7-23. doi: 10.1111/prd.12221.

Reference Type BACKGROUND
PMID: 28758294 (View on PubMed)

Almubarak A, Tanagala KKK, Papapanou PN, Lalla E, Momen-Heravi F. Disruption of Monocyte and Macrophage Homeostasis in Periodontitis. Front Immunol. 2020 Feb 26;11:330. doi: 10.3389/fimmu.2020.00330. eCollection 2020.

Reference Type BACKGROUND
PMID: 32210958 (View on PubMed)

Gordon S, Pluddemann A, Martinez Estrada F. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev. 2014 Nov;262(1):36-55. doi: 10.1111/imr.12223.

Reference Type BACKGROUND
PMID: 25319326 (View on PubMed)

Satoh T. [Functional diversity of disorder-specific macrophages]. Rinsho Ketsueki. 2018;59(6):805-811. doi: 10.11406/rinketsu.59.805. Japanese.

Reference Type BACKGROUND
PMID: 29973463 (View on PubMed)

Kedia-Mehta N, Finlay DK. Competition for nutrients and its role in controlling immune responses. Nat Commun. 2019 May 9;10(1):2123. doi: 10.1038/s41467-019-10015-4.

Reference Type BACKGROUND
PMID: 31073180 (View on PubMed)

Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z, Tan M. Diverse Roles of Mitochondria in Immune Responses: Novel Insights Into Immuno-Metabolism. Front Immunol. 2018 Jul 12;9:1605. doi: 10.3389/fimmu.2018.01605. eCollection 2018.

Reference Type BACKGROUND
PMID: 30050539 (View on PubMed)

Rath M, Muller I, Kropf P, Closs EI, Munder M. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front Immunol. 2014 Oct 27;5:532. doi: 10.3389/fimmu.2014.00532. eCollection 2014.

Reference Type BACKGROUND
PMID: 25386178 (View on PubMed)

Nouwen LV, Everts B. Pathogens MenTORing Macrophages and Dendritic Cells: Manipulation of mTOR and Cellular Metabolism to Promote Immune Escape. Cells. 2020 Jan 9;9(1):161. doi: 10.3390/cells9010161.

Reference Type BACKGROUND
PMID: 31936570 (View on PubMed)

Hardbower DM, Asim M, Luis PB, Singh K, Barry DP, Yang C, Steeves MA, Cleveland JL, Schneider C, Piazuelo MB, Gobert AP, Wilson KT. Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E751-E760. doi: 10.1073/pnas.1614958114. Epub 2017 Jan 17.

Reference Type BACKGROUND
PMID: 28096401 (View on PubMed)

Moinard C, Caldefie F, Walrand S, Felgines C, Vasson MP, Cynober L. Involvement of glutamine, arginine, and polyamines in the action of ornithine alpha-ketoglutarate on macrophage functions in stressed rats. J Leukoc Biol. 2000 Jun;67(6):834-40. doi: 10.1002/jlb.67.6.834.

Reference Type BACKGROUND
PMID: 10857856 (View on PubMed)

Liao SY, Showalter MR, Linderholm AL, Franzi L, Kivler C, Li Y, Sa MR, Kons ZA, Fiehn O, Qi L, Zeki AA, Kenyon NJ. l-Arginine supplementation in severe asthma. JCI Insight. 2020 Jul 9;5(13):e137777. doi: 10.1172/jci.insight.137777.

Reference Type BACKGROUND
PMID: 32497023 (View on PubMed)

Simsek B, Cakatay U. Could ornithine supplementation be beneficial to prevent the formation of pro-atherogenic carbamylated low-density lipoprotein (c-LDL) particles? Med Hypotheses. 2019 May;126:20-22. doi: 10.1016/j.mehy.2019.03.004. Epub 2019 Mar 9.

Reference Type BACKGROUND
PMID: 31010493 (View on PubMed)

Campion D, Giovo I, Ponzo P, Saracco GM, Balzola F, Alessandria C. Dietary approach and gut microbiota modulation for chronic hepatic encephalopathy in cirrhosis. World J Hepatol. 2019 Jun 27;11(6):489-512. doi: 10.4254/wjh.v11.i6.489.

Reference Type BACKGROUND
PMID: 31293718 (View on PubMed)

Ito N, Seki S, Ueda F. Effects of Composite Supplement Containing Collagen Peptide and Ornithine on Skin Conditions and Plasma IGF-1 Levels-A Randomized, Double-Blind, Placebo-Controlled Trial. Mar Drugs. 2018 Dec 3;16(12):482. doi: 10.3390/md16120482.

Reference Type BACKGROUND
PMID: 30513923 (View on PubMed)

Fabriek BO, Dijkstra CD, van den Berg TK. The macrophage scavenger receptor CD163. Immunobiology. 2005;210(2-4):153-60. doi: 10.1016/j.imbio.2005.05.010.

Reference Type BACKGROUND
PMID: 16164022 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

0120U101151

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Control of Periodontal Infections
NCT01098448 COMPLETED PHASE3