VR to Reduce Pain/Anxiety During IV Starts

NCT ID: NCT04942561

Last Updated: 2021-07-01

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

107 participants

Study Classification

INTERVENTIONAL

Study Start Date

2017-04-12

Study Completion Date

2019-07-24

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

This study aims to test the effectiveness of virtual reality (VR) as a non-pharmaceutical intervention to reduce pain and anxiety in children undergoing peripheral intravenous catheter (PIVC) access in the Department of Radiology and Imaging or the outpatient Infusion Center at CHLA, as measured by self- and proxy-report.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Distraction is a form of non pharmacological intervention for reducing pain and anxiety in children during painful medical procedures (e.g., venipuncture, IV placement). Recent technological developments in the area of virtual reality (VR) provide new and potentially more effective ways of distracting children from the pain and anxiety associated with medical procedures. While initial studies of VR pain distraction are promising, few have studied the effectiveness of the technology in children, using a multi-method approach. The current study aims to recruit 115 children ages 10-21 years and their caregivers who arrive at the hospital for peripheral intravenous catheter (PIVC) access in the Department of Radiology and Imaging or the outpatient Infusion Center. Children and their parents will be randomly assigned to one of two treatment conditions: 1) existing hospital standard of care or 2) standard of care plus distraction via VR. Children and caregivers will be asked to complete measures assessing pain and anxiety both before and after the procedure. In addition, objective measures of child pain and distress during the PIVC access will be taken using coding of behavioral/verbal expressions. Univariate Analysis of Variance (ANOVA) will be used to compare differences in primary and secondary outcome variables in VR + standard of care to standard of care only conditions when pre and post-operative measures are available. Univariate ANOVA will be used to compare conditions on post-operative variables.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Radiology

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

SUPPORTIVE_CARE

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Standard of Care (No VR) Randomization

In the standard of care treatment condition, participants will receive the standard CHLA treatment protocol for PIVC placement (i.e., a topical numbing spray and Buzzy® Bee, a vibrating device placed near the PIVC site for pain distraction).

Group Type NO_INTERVENTION

No interventions assigned to this group

VR Randomization

Children in the VR condition will undergo the invasive procedure while distracted by interaction with an immersive virtual environment (VE) presented via a head mounted display (HMD). The intervention group will receive standard CHLA treatment with VR distraction. Patients began gameplay \<5 minutes before their PIVC placement and concluded after successful vascular access.

Group Type EXPERIMENTAL

Samsung Gear VR

Intervention Type DEVICE

Participants 13 -21 years old can use the Samsung Gear VR. The VE is mobile based (Samsung with the Gear VR) and has active matrix LCDs with high pixel resolution, creating a bright, vibrant color and a quality image. Participants will engage with BearBlast (appliedVR™), a multi-sensory VR game in which users travel on a pre-set path through a colorful, highly-interactive 3-D environment filled with animated landscapes, buildings, and clouds, during which the user's gaze controls the direction of a firing cannon to knock down teddy bears. The VR game is equipped with a head-tracking system, enabling the player to look around the VE. Therefore, the child will be receiving distraction via 3-D visual and auditory sensory, thus supplying a multi-sensory immersive experience. While wearing these glasses, the children only can see the HMD screen so that the immersion and presence will be increased. The VR glasses will be sanitized before every use to minimize chance of infection.

Merge VR

Intervention Type DEVICE

Participants 10-21 years can use the Merge. The VE to be used in this study is mobile based (Pixel with the Merge) and has active matrix LCDs with high pixel resolution, creating a bright, vibrant color and a quality image. Participants will engage with BearBlast (appliedVR™), a multi-sensory VR game in which users travel on a pre-set path through a colorful, highly-interactive 3-D environment filled with animated landscapes, buildings, and clouds, during which the user's gaze controls the direction of a firing cannon to knock down teddy bears. The VR game is equipped with a head-tracking system, enabling the player to look around the VE. Therefore, the child will be receiving distraction via 3-D visual and auditory sensory, thus supplying a multi-sensory immersive experience. While wearing these glasses, the children only can see the HMD screen so that the immersion and presence will be increased. The VR glasses will be sanitized before every use to minimize chance of infection.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Samsung Gear VR

Participants 13 -21 years old can use the Samsung Gear VR. The VE is mobile based (Samsung with the Gear VR) and has active matrix LCDs with high pixel resolution, creating a bright, vibrant color and a quality image. Participants will engage with BearBlast (appliedVR™), a multi-sensory VR game in which users travel on a pre-set path through a colorful, highly-interactive 3-D environment filled with animated landscapes, buildings, and clouds, during which the user's gaze controls the direction of a firing cannon to knock down teddy bears. The VR game is equipped with a head-tracking system, enabling the player to look around the VE. Therefore, the child will be receiving distraction via 3-D visual and auditory sensory, thus supplying a multi-sensory immersive experience. While wearing these glasses, the children only can see the HMD screen so that the immersion and presence will be increased. The VR glasses will be sanitized before every use to minimize chance of infection.

Intervention Type DEVICE

Merge VR

Participants 10-21 years can use the Merge. The VE to be used in this study is mobile based (Pixel with the Merge) and has active matrix LCDs with high pixel resolution, creating a bright, vibrant color and a quality image. Participants will engage with BearBlast (appliedVR™), a multi-sensory VR game in which users travel on a pre-set path through a colorful, highly-interactive 3-D environment filled with animated landscapes, buildings, and clouds, during which the user's gaze controls the direction of a firing cannon to knock down teddy bears. The VR game is equipped with a head-tracking system, enabling the player to look around the VE. Therefore, the child will be receiving distraction via 3-D visual and auditory sensory, thus supplying a multi-sensory immersive experience. While wearing these glasses, the children only can see the HMD screen so that the immersion and presence will be increased. The VR glasses will be sanitized before every use to minimize chance of infection.

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Children who are 10-21 years old
2. Children who are English speaking (caregivers may be Spanish English speaking or Spanish speaking)
3. Children who are undergoing PIVC access in the Department of Radiology and Imaging or the outpatient Infusion Center.
4. Only children who are in the normal range of development will be recruited for this study. This will be assessed by report from the parents. The rationale for excluding patients with developmental delay is that due to their cognitive impairments, such children react to the stressors of surgery differently than do children without such developmental delay. It is unclear how such children would use the interventions included in this study, and it is likely that their responses on baseline and outcome measures will differ from children of normal developmental parameters.


1. Healthcare providers must be 18 years old or older
2. Healthcare providers must be Children's Hospital Los Angeles staff
3. Healthcare providers may participate if they have witnessed and/or administered the medical procedure

Exclusion Criteria

1. Children who are currently taking pain medication or anxiolytic medication will be excluded from this study.
2. Children with a psychiatric disorder, organic brain syndrome, mental retardation, or other known cognitive/neurological disorders
3. Children with visual, auditory, or tactile deficits that would interfere with the ability to complete the experimental tasks
4. Children with a history of seizure disorder.
5. Children currently sick with flu-like symptoms or experiencing a headache or earache.
6. Children with known or suspected motion sickness
Minimum Eligible Age

10 Years

Maximum Eligible Age

21 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

AppliedVR Inc.

INDUSTRY

Sponsor Role collaborator

Children's Hospital Los Angeles

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Jeffrey I Gold, PhD

Principal Investigator

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Jeffrey I Gold, PhD

Role: PRINCIPAL_INVESTIGATOR

Children's Hospital Los Angeles

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Children's Hospital Los Angeles

Los Angeles, California, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Ahmadpour N, Keep M, Janssen A, Rouf AS, Marthick M. Design Strategies for Virtual Reality Interventions for Managing Pain and Anxiety in Children and Adolescents: Scoping Review. JMIR Serious Games. 2020 Jan 31;8(1):e14565. doi: 10.2196/14565.

Reference Type BACKGROUND
PMID: 32012042 (View on PubMed)

Matsangidou M, Ang CS, Sakel M. Clinical utility of virtual reality in pain management: a comprehensive research review. Br J Neurosci Nurs. 2017;13(3):133-143. doi:10.12968/bjnn.2017.13.3.133

Reference Type BACKGROUND

Deacon B, Abramowitz J. Anxiety sensitivity and its dimensions across the anxiety disorders. J Anxiety Disord. 2006;20(7):837-57. doi: 10.1016/j.janxdis.2006.01.003. Epub 2006 Feb 8.

Reference Type BACKGROUND
PMID: 16466904 (View on PubMed)

Kazak AE, Kassam-Adams N, Schneider S, Zelikovsky N, Alderfer MA, Rourke M. An integrative model of pediatric medical traumatic stress. J Pediatr Psychol. 2006 May;31(4):343-55. doi: 10.1093/jpepsy/jsj054. Epub 2005 Aug 10.

Reference Type BACKGROUND
PMID: 16093522 (View on PubMed)

Inan G, Inal S. The Impact of 3 Different Distraction Techniques on the Pain and Anxiety Levels of Children During Venipuncture: A Clinical Trial. Clin J Pain. 2019 Feb;35(2):140-147. doi: 10.1097/AJP.0000000000000666.

Reference Type BACKGROUND
PMID: 30362982 (View on PubMed)

Gershon J, Zimand E, Pickering M, Rothbaum BO, Hodges L. A pilot and feasibility study of virtual reality as a distraction for children with cancer. J Am Acad Child Adolesc Psychiatry. 2004 Oct;43(10):1243-9. doi: 10.1097/01.chi.0000135621.23145.05.

Reference Type BACKGROUND
PMID: 15381891 (View on PubMed)

Gold JI, Kim SH, Kant AJ, Joseph MH, Rizzo AS. Effectiveness of virtual reality for pediatric pain distraction during i.v. placement. Cyberpsychol Behav. 2006 Apr;9(2):207-12. doi: 10.1089/cpb.2006.9.207.

Reference Type BACKGROUND
PMID: 16640481 (View on PubMed)

Hoffman HG, Patterson DR, Carrougher GJ, Sharar SR. Effectiveness of virtual reality-based pain control with multiple treatments. Clin J Pain. 2001 Sep;17(3):229-35. doi: 10.1097/00002508-200109000-00007.

Reference Type BACKGROUND
PMID: 11587113 (View on PubMed)

Morris LD, Louw QA, Grimmer-Somers K. The effectiveness of virtual reality on reducing pain and anxiety in burn injury patients: a systematic review. Clin J Pain. 2009 Nov-Dec;25(9):815-26. doi: 10.1097/AJP.0b013e3181aaa909.

Reference Type BACKGROUND
PMID: 19851164 (View on PubMed)

Kucuk Alemdar D, Yaman Aktas Y. The Use of the Buzzy, Jet Lidokaine, Bubble-blowing and Aromatherapy for Reducing Pediatric Pain, Stress and Fear Associated with Phlebotomy. J Pediatr Nurs. 2019 Mar-Apr;45:e64-e72. doi: 10.1016/j.pedn.2019.01.010. Epub 2019 Jan 30.

Reference Type BACKGROUND
PMID: 30711327 (View on PubMed)

Das DA, Grimmer KA, Sparnon AL, McRae SE, Thomas BH. The efficacy of playing a virtual reality game in modulating pain for children with acute burn injuries: a randomized controlled trial [ISRCTN87413556]. BMC Pediatr. 2005 Mar 3;5(1):1. doi: 10.1186/1471-2431-5-1.

Reference Type BACKGROUND
PMID: 15745448 (View on PubMed)

Thrane SE, Wanless S, Cohen SM, Danford CA. The Assessment and Non-Pharmacologic Treatment of Procedural Pain From Infancy to School Age Through a Developmental Lens: A Synthesis of Evidence With Recommendations. J Pediatr Nurs. 2016 Jan-Feb;31(1):e23-32. doi: 10.1016/j.pedn.2015.09.002. Epub 2015 Sep 28.

Reference Type BACKGROUND
PMID: 26424196 (View on PubMed)

Bandstra NF, Skinner L, Leblanc C, Chambers CT, Hollon EC, Brennan D, Beaver C. The role of child life in pediatric pain management: a survey of child life specialists. J Pain. 2008 Apr;9(4):320-9. doi: 10.1016/j.jpain.2007.11.004. Epub 2008 Jan 16.

Reference Type BACKGROUND
PMID: 18201933 (View on PubMed)

Dunn A, Patterson J, Biega CF, Grishchenko A, Luna J, Stanek JR, Strouse R. A Novel Clinician-Orchestrated Virtual Reality Platform for Distraction During Pediatric Intravenous Procedures in Children With Hemophilia: Randomized Controlled Trial. JMIR Serious Games. 2019 Jan 9;7(1):e10902. doi: 10.2196/10902.

Reference Type BACKGROUND
PMID: 30626567 (View on PubMed)

Dumoulin S, Bouchard S, Ellis J, Lavoie KL, Vezina MP, Charbonneau P, Tardif J, Hajjar A. A Randomized Controlled Trial on the Use of Virtual Reality for Needle-Related Procedures in Children and Adolescents in the Emergency Department. Games Health J. 2019 Aug;8(4):285-293. doi: 10.1089/g4h.2018.0111. Epub 2019 May 24.

Reference Type BACKGROUND
PMID: 31135178 (View on PubMed)

Furman E, Jasinevicius TR, Bissada NF, Victoroff KZ, Skillicorn R, Buchner M. Virtual reality distraction for pain control during periodontal scaling and root planing procedures. J Am Dent Assoc. 2009 Dec;140(12):1508-16. doi: 10.14219/jada.archive.2009.0102.

Reference Type BACKGROUND
PMID: 19955069 (View on PubMed)

Uman LS, Chambers CT, McGrath PJ, Kisely S. A systematic review of randomized controlled trials examining psychological interventions for needle-related procedural pain and distress in children and adolescents: an abbreviated cochrane review. J Pediatr Psychol. 2008 Sep;33(8):842-54. doi: 10.1093/jpepsy/jsn031. Epub 2008 Apr 2.

Reference Type BACKGROUND
PMID: 18387963 (View on PubMed)

Gold JI, Mahrer NE. Is Virtual Reality Ready for Prime Time in the Medical Space? A Randomized Control Trial of Pediatric Virtual Reality for Acute Procedural Pain Management. J Pediatr Psychol. 2018 Apr 1;43(3):266-275. doi: 10.1093/jpepsy/jsx129.

Reference Type BACKGROUND
PMID: 29053848 (View on PubMed)

Won AS, Bailey J, Bailenson J, Tataru C, Yoon IA, Golianu B. Immersive Virtual Reality for Pediatric Pain. Children (Basel). 2017 Jun 23;4(7):52. doi: 10.3390/children4070052.

Reference Type BACKGROUND
PMID: 28644422 (View on PubMed)

Schneider SM, Kisby CK, Flint EP. Effect of virtual reality on time perception in patients receiving chemotherapy. Support Care Cancer. 2011 Apr;19(4):555-64. doi: 10.1007/s00520-010-0852-7. Epub 2010 Mar 26.

Reference Type BACKGROUND
PMID: 20336327 (View on PubMed)

Ashmore J, Di Pietro J, Williams K, Stokes E, Symons A, Smith M, Clegg L, McGrath C. A Free Virtual Reality Experience to Prepare Pediatric Patients for Magnetic Resonance Imaging: Cross-Sectional Questionnaire Study. JMIR Pediatr Parent. 2019 Apr 18;2(1):e11684. doi: 10.2196/11684.

Reference Type BACKGROUND
PMID: 31518319 (View on PubMed)

Hua Y, Qiu R, Yao WY, Zhang Q, Chen XL. The Effect of Virtual Reality Distraction on Pain Relief During Dressing Changes in Children with Chronic Wounds on Lower Limbs. Pain Manag Nurs. 2015 Oct;16(5):685-91. doi: 10.1016/j.pmn.2015.03.001. Epub 2015 May 9.

Reference Type BACKGROUND
PMID: 25972074 (View on PubMed)

Wiederhold BK, Gao K, Sulea C, Wiederhold MD. Virtual reality as a distraction technique in chronic pain patients. Cyberpsychol Behav Soc Netw. 2014 Jun;17(6):346-52. doi: 10.1089/cyber.2014.0207.

Reference Type BACKGROUND
PMID: 24892196 (View on PubMed)

Neugebauer V, Li W, Bird GC, Han JS. The amygdala and persistent pain. Neuroscientist. 2004 Jun;10(3):221-34. doi: 10.1177/1073858403261077.

Reference Type BACKGROUND
PMID: 15155061 (View on PubMed)

Chan E, Hovenden M, Ramage E, Ling N, Pham JH, Rahim A, Lam C, Liu L, Foster S, Sambell R, Jeyachanthiran K, Crock C, Stock A, Hopper SM, Cohen S, Davidson A, Plummer K, Mills E, Craig SS, Deng G, Leong P. Virtual Reality for Pediatric Needle Procedural Pain: Two Randomized Clinical Trials. J Pediatr. 2019 Jun;209:160-167.e4. doi: 10.1016/j.jpeds.2019.02.034. Epub 2019 Apr 29.

Reference Type BACKGROUND
PMID: 31047650 (View on PubMed)

Walther-Larsen S, Petersen T, Friis SM, Aagaard G, Drivenes B, Opstrup P. Immersive Virtual Reality for Pediatric Procedural Pain: A Randomized Clinical Trial. Hosp Pediatr. 2019 Jul;9(7):501-507. doi: 10.1542/hpeds.2018-0249. Epub 2019 Jun 3.

Reference Type BACKGROUND
PMID: 31160472 (View on PubMed)

Wong CL, Lui MMW, Choi KC. Effects of immersive virtual reality intervention on pain and anxiety among pediatric patients undergoing venipuncture: a study protocol for a randomized controlled trial. Trials. 2019 Jun 20;20(1):369. doi: 10.1186/s13063-019-3443-z.

Reference Type BACKGROUND
PMID: 31221208 (View on PubMed)

Hicks CL, von Baeyer CL, Spafford PA, van Korlaar I, Goodenough B. The Faces Pain Scale-Revised: toward a common metric in pediatric pain measurement. Pain. 2001 Aug;93(2):173-183. doi: 10.1016/S0304-3959(01)00314-1.

Reference Type BACKGROUND
PMID: 11427329 (View on PubMed)

Tomlinson D, von Baeyer CL, Stinson JN, Sung L. A systematic review of faces scales for the self-report of pain intensity in children. Pediatrics. 2010 Nov;126(5):e1168-98. doi: 10.1542/peds.2010-1609. Epub 2010 Oct 4.

Reference Type BACKGROUND
PMID: 20921070 (View on PubMed)

Bringuier S, Dadure C, Raux O, Dubois A, Picot MC, Capdevila X. The perioperative validity of the visual analog anxiety scale in children: a discriminant and useful instrument in routine clinical practice to optimize postoperative pain management. Anesth Analg. 2009 Sep;109(3):737-44. doi: 10.1213/ane.0b013e3181af00e4.

Reference Type BACKGROUND
PMID: 19690240 (View on PubMed)

Silverman WK, Fleisig W, Rabian B, Peterson RA. Child Anxiety Sensitivity Index. J Clin Child Psychol. 1991;20(2):162-168. doi:10.1207/s15374424jccp2002_7

Reference Type BACKGROUND

Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM, Edwards V, Koss MP, Marks JS. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am J Prev Med. 1998 May;14(4):245-58. doi: 10.1016/s0749-3797(98)00017-8.

Reference Type BACKGROUND
PMID: 9635069 (View on PubMed)

Spiegel B, Fuller G, Lopez M, Dupuy T, Noah B, Howard A, Albert M, Tashjian V, Lam R, Ahn J, Dailey F, Rosen BT, Vrahas M, Little M, Garlich J, Dzubur E, IsHak W, Danovitch I. Virtual reality for management of pain in hospitalized patients: A randomized comparative effectiveness trial. PLoS One. 2019 Aug 14;14(8):e0219115. doi: 10.1371/journal.pone.0219115. eCollection 2019.

Reference Type BACKGROUND
PMID: 31412029 (View on PubMed)

Tashjian VC, Mosadeghi S, Howard AR, Lopez M, Dupuy T, Reid M, Martinez B, Ahmed S, Dailey F, Robbins K, Rosen B, Fuller G, Danovitch I, IsHak W, Spiegel B. Virtual Reality for Management of Pain in Hospitalized Patients: Results of a Controlled Trial. JMIR Ment Health. 2017 Mar 29;4(1):e9. doi: 10.2196/mental.7387.

Reference Type BACKGROUND
PMID: 28356241 (View on PubMed)

Vadivelu N, Kai AM, Kodumudi V, Sramcik J, Kaye AD. The Opioid Crisis: a Comprehensive Overview. Curr Pain Headache Rep. 2018 Feb 23;22(3):16. doi: 10.1007/s11916-018-0670-z.

Reference Type BACKGROUND
PMID: 29476358 (View on PubMed)

Amin AM, Tong X, Gromala D, Shaw CD. Cardboard Mobile Virtual Reality as an Approach for Pain Distraction in Clinical Settings: Comparison, Exploration and Evaluation with Oculus Rift. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems. CHI EA '17. Association for Computing Machinery; 2017:2345-2351. doi:10.1145/3027063.3053234

Reference Type BACKGROUND

Hendricks TM, Gutierrez CN, Stulak JM, Dearani JA, Miller JD. The Use of Virtual Reality to Reduce Preoperative Anxiety in First-Time Sternotomy Patients: A Randomized Controlled Pilot Trial. Mayo Clin Proc. 2020 Jun;95(6):1148-1157. doi: 10.1016/j.mayocp.2020.02.032.

Reference Type BACKGROUND
PMID: 32498771 (View on PubMed)

Ahmadpour N, Randall H, Choksi H, Gao A, Vaughan C, Poronnik P. Virtual Reality interventions for acute and chronic pain management. Int J Biochem Cell Biol. 2019 Sep;114:105568. doi: 10.1016/j.biocel.2019.105568. Epub 2019 Jul 12.

Reference Type BACKGROUND
PMID: 31306747 (View on PubMed)

Gershon J, Zimand E, Lemos R, Rothbaum BO, Hodges L. Use of virtual reality as a distractor for painful procedures in a patient with pediatric cancer: a case study. Cyberpsychol Behav. 2003 Dec;6(6):657-61. doi: 10.1089/109493103322725450.

Reference Type BACKGROUND
PMID: 14756933 (View on PubMed)

Firoozabadi R, Elhaddad M, Drever S, Soltani M, Githens M, Kleweno CP, Sharar SR, Patterson DR, Hoffman HG. Case Report: Virtual Reality Analgesia in an Opioid Sparing Orthopedic Outpatient Clinic Setting: A Case Study. Front Virtual Real. 2020 Dec;1:553492. doi: 10.3389/frvir.2020.553492. Epub 2020 Dec 14.

Reference Type BACKGROUND
PMID: 33585832 (View on PubMed)

Ozalp Gerceker G, Ayar D, Ozdemir EZ, Bektas M. Effects of virtual reality on pain, fear and anxiety during blood draw in children aged 5-12 years old: A randomised controlled study. J Clin Nurs. 2020 Apr;29(7-8):1151-1161. doi: 10.1111/jocn.15173. Epub 2020 Jan 22.

Reference Type BACKGROUND
PMID: 31889358 (View on PubMed)

Thomas JJ, Albietz J, Polaner D. Virtual reality for lumbar puncture in a morbidly obese patient with leukemia. Paediatr Anaesth. 2018 Nov;28(11):1059-1060. doi: 10.1111/pan.13505. Epub 2018 Oct 4.

Reference Type BACKGROUND
PMID: 30284748 (View on PubMed)

Wong CL, Li CK, Chan CWH, Choi KC, Chen J, Yeung MT, Chan ON. Virtual Reality Intervention Targeting Pain and Anxiety Among Pediatric Cancer Patients Undergoing Peripheral Intravenous Cannulation: A Randomized Controlled Trial. Cancer Nurs. 2021 Nov-Dec 01;44(6):435-442. doi: 10.1097/NCC.0000000000000844.

Reference Type BACKGROUND
PMID: 32511154 (View on PubMed)

Loreto-Quijada D, Gutierrez-Maldonado J, Gutierrez-Martinez O, Nieto R. Testing a virtual reality intervention for pain control. Eur J Pain. 2013 Oct;17(9):1403-10. doi: 10.1002/j.1532-2149.2013.00316.x. Epub 2013 Apr 12.

Reference Type BACKGROUND
PMID: 23580493 (View on PubMed)

Piskorz J, Czub M. Effectiveness of a virtual reality intervention to minimize pediatric stress and pain intensity during venipuncture. J Spec Pediatr Nurs. 2018 Jan;23(1). doi: 10.1111/jspn.12201. Epub 2017 Nov 20.

Reference Type BACKGROUND
PMID: 29155488 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

CHLA-15-00549_A

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Virtual Reality for Hemophilia
NCT03507582 COMPLETED NA
Little NIRVANA for Pediatric Pain and Anxiety
NCT06795126 ENROLLING_BY_INVITATION NA