nHFOV Versus Invasive Conventional Ventilation for Preterm Neonates With Respiratory Distress Syndrome
NCT ID: NCT04914715
Last Updated: 2024-03-12
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
WITHDRAWN
NA
INTERVENTIONAL
2021-06-30
2023-12-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Nasal High Frequency Oscillation Ventilation(NHFOV) for Respiratory Distress Syndrome
NCT03140891
Nasal High Frequency Oscillatory Versus Nasal Intermittent Positive Pressure Ventilation in Neonate After Extubation
NCT02543125
Nasal High Frequency in Preterm Neonates
NCT06687083
Noninvasive High Frequency Oscillatory Ventilation as a Post-extubation Respiratory Support in Neonates
NCT05493527
High Frequency Oscillatory Ventilation Combined With Intermittent Sigh Breaths: Effects on Blood Oxygenation and Stability of Oxygenation
NCT01959009
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Non-invasive ventilation include CPAP (Continuous Positive Airway Pressure), NIPPV (Non-invasive Positive Pressure Ventilation) and nHFOV (Non-invasive High Frequency Oscillatory Ventilation). Non-invasive ventilation is currently the preferred mode of ventilation globally due to its safety profile, early weaning, less barotrauma, volume trauma and other complications.
Literature review reveals reported comparison for some non-invasive modes of ventilation like CPAP and NIPPV versus conventional ventilation however other non-invasive modes such as nHFOV have still not been appropriately evaluated. nHFOV provides 60-1200 breath/minute with minimal tidal volume while keeping the lungs expanded with equal distribution of air in whole lung so less chances of barotrauma and volutrauma. Extra pressure which is not needed by the lung is dissipated through oral cavity and esophagus to the stomach. Few observational studies reported that extubation failure is better prevented with utilization of NHFOV.
For preterm neonates with RDS nHFOV compared with nCPAP showed better results in term of short duration of intervention, less chances of failure, low incidence of intraventricular hemorrhage, and other respiratory complications were almost equal.
A multicenter double, blinded, randomized controlled trial is under process for using non-invasive ventilation to prevent extubation failure. Another randomized controlled cross over trial performed in a small number of extreme preterm does showed better clearance of carbon dioxide with nHFOV compared with CPAP.
Retrospective cohort study published recently evaluating the use of non-invasive ventilation (nCPAP, SNIPPV and nHFOV) for preterm neonates with RDS, showed satisfactory outcomes with nHFOV with fewer babies requiring invasive ventilation.
A metanalysis of Randomized Controlled Trials of studies evaluating the use of nHFOV, nCPAP and biphasic CPAP; published recently showed nHFOV to be more effective as compared to other modes. The primary outcome of the RCT included in the meta analysis was decreased chances of intubation and better clearance of carbon dioxide.
In this study investigators will include inborn preterm neonates with no antenatal, perinatal risk factor or anomalies that can affect the outcome. Those babies who developed respiratory distress syndrome at birth and does not need early invasive ventilation will be recruited in study. Study will be conducted in almost 10 centers in Pakistan and Russia, total 1200 babies will be included from all centers. After all teaching and training regarding management strategies and equipment utilization. Recruited participants will be further divided in two arms, one in intervention arm (nHFOV) and other is control arm (Invasive Conventional) ventilation. Outcome will be assessed for respiratory support, surfactant requirement, duration of respiratory support, response to therapy and complications related to respiratory support.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Non-invasive High Frequency Oscillatory Ventilation
Preterm babies (26-28 weeks) born with respiratory distress will be initially started on nCPAP with setting of flow 6-8 liter, PEEP 5-6, FiO2 21-40%. If fio2 requirefment more than 40%, surfactant will be given in first 2 hours of birth. If baby fails on CPAP then will be switched to nHFOV with below mentioned settings.
Preterm born babies 28-34 weeks gestation with RDS, respiratory support will be started on Heated Humidified High Flow Oxygen therapy or nCPAP, if that fails then baby will be switched to NHFOV with frequency of 5-20 (300-1200 breathe/min), Amplitude of 1-10, flow1-17.5 liter/min, fiO2 21-100% and integrated pressure triggered sensitivity option.
Non-invasive High Frequency Oscillatory Ventilation
We are planning to use (Medin-CNO) for non-invasive ventilation. This machine has option to deliver NHFOV with frequency of 5-20 (300-1200 breathe/min), Amplitude of 1-10, flow1-17.5 liter/min, fiO2 21-100% and integrated pressure triggered sensitivity option.
Conventional Invasive Ventilation
Preterm babies (26-28 weeks) born with respiratory distress will be initially started on nCPAP with setting of flow 6-8 liter, PEEP 5-6, FiO2 21-40%. If fio2 requirement more than 40%, surfactant will be given in first 2 hours of birth. If baby fails on CPAP then will be switched to nHFOV with below mentioned settings.
Preterm born babies 28-34 weeks gestation with RDS, respiratory support will be started on Heated Humidified High Flow Oxygen therapy or nCPAP, if that fails then baby will be switched to invasive ventilation through endotracheal tube, mode will be selected as Synchronized Intermittent Mandatory ventilation (SIMV) with rate of 25-60 breath/min, flow of 8 liter, positive inspiratory pressure (PIP) of 14-25, Positive end expiratory pressure (PEEP) 4-5, fio2 of 21-40.
Conventional Invasive Ventilation
Invasive ventilation will be started following endotracheal intubation, mode will be selected as Synchronized Intermittent Mandatory ventilation (SIMV) with rate of 25-60 breath/min, flow of 8 liter, positive inspiratory pressure (PIP) of 14-25, Positive end expiratory pressure (PEEP) 4-5, fio2 of 21-40.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Non-invasive High Frequency Oscillatory Ventilation
We are planning to use (Medin-CNO) for non-invasive ventilation. This machine has option to deliver NHFOV with frequency of 5-20 (300-1200 breathe/min), Amplitude of 1-10, flow1-17.5 liter/min, fiO2 21-100% and integrated pressure triggered sensitivity option.
Conventional Invasive Ventilation
Invasive ventilation will be started following endotracheal intubation, mode will be selected as Synchronized Intermittent Mandatory ventilation (SIMV) with rate of 25-60 breath/min, flow of 8 liter, positive inspiratory pressure (PIP) of 14-25, Positive end expiratory pressure (PEEP) 4-5, fio2 of 21-40.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Babies who were initially started on High Flow Oxygen Therapy/nCPAP but unable to maintain saturation \> 90% on fio2 of 40% in 1st 6 hours of life.
* Capillary PCO2 of \> 70 or arterial PCO2 \> 65 on two repeated sampling within 4 hours
* Neonates whose parents consented to participate.
Exclusion Criteria
* Preterm neonates (26-34 weeks) with diagnosis of RDS requiring endotracheal intubation within Labor room/Operation Theater or within 1st hour of life for respiratory support.
* Preterm Neonates with the gestational age of 26-34 weeks, diagnosed as congenital pneumonia or sepsis.
* Patient with poor respiratory drive due to any reason neurological or central causes
* Diaphragmatic hernia or any other thoracic anomaly
* Pleural effusion unilateral or bilateral
* Congenital cystic pulmonary malformation.
* Neonates with underlying cyanotic heart disease.
* Neonates with acynotic heart disease causing pulmonary edema
* Neonates with cleft lip and cleft palate or any other surgical condition.
1 Hour
6 Hours
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Indus Hospital and Health Network
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Syed RA Rehan Ali, FRCPCH
Role: PRINCIPAL_INVESTIGATOR
The Indus Hospital and Health Network
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Indus Hospital and Health Network
Karachi, Sindh, Pakistan
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Sankar MJ, Gupta N, Jain K, Agarwal R, Paul VK. Efficacy and safety of surfactant replacement therapy for preterm neonates with respiratory distress syndrome in low- and middle-income countries: a systematic review. J Perinatol. 2016 May;36 Suppl 1(Suppl 1):S36-48. doi: 10.1038/jp.2016.31.
Wheeler CR, Smallwood CD. 2019 Year in Review: Neonatal Respiratory Support. Respir Care. 2020 May;65(5):693-704. doi: 10.4187/respcare.07720. Epub 2020 Mar 24.
Boel L, Broad K, Chakraborty M. Non-invasive respiratory support in newborn infants. Paediatrics and Child Health. 2018;28(1):6-12.
Fischer H. Efficacy and safety of non-invasive respiratory support in neonates. 2018.
Batey N, Bustani P. Neonatal high-frequency oscillatory ventilation. Paediatrics and Child Health. 2020;30(4):149-53.
Fischer HS, Bohlin K, Buhrer C, Schmalisch G, Cremer M, Reiss I, Czernik C. Nasal high-frequency oscillation ventilation in neonates: a survey in five European countries. Eur J Pediatr. 2015 Apr;174(4):465-71. doi: 10.1007/s00431-014-2419-y. Epub 2014 Sep 18.
Huang J, Yuan L, Chen C. [Research advances in noninvasive high-frequency oscillatory ventilation in neonates]. Zhongguo Dang Dai Er Ke Za Zhi. 2017 May;19(5):607-611. doi: 10.7499/j.issn.1008-8830.2017.05.025. Chinese.
Iranpour R, Armanian AM, Abedi AR, Farajzadegan Z. Nasal high-frequency oscillatory ventilation (nHFOV) versus nasal continuous positive airway pressure (NCPAP) as an initial therapy for respiratory distress syndrome (RDS) in preterm and near-term infants. BMJ Paediatr Open. 2019 Jul 14;3(1):e000443. doi: 10.1136/bmjpo-2019-000443. eCollection 2019.
Shi Y, De Luca D; NASal OscillatioN post-Extubation (NASONE) study group. Continuous positive airway pressure (CPAP) vs noninvasive positive pressure ventilation (NIPPV) vs noninvasive high frequency oscillation ventilation (NHFOV) as post-extubation support in preterm neonates: protocol for an assessor-blinded, multicenter, randomized controlled trial. BMC Pediatr. 2019 Jul 26;19(1):256. doi: 10.1186/s12887-019-1625-1.
Bottino R, Pontiggia F, Ricci C, Gambacorta A, Paladini A, Chijenas V, Liubsys A, Navikiene J, Pliauckiene A, Mercadante D, Colnaghi M, Tana M, Tirone C, Lio A, Aurilia C, Pastorino R, Purcaro V, Maffei G, Liberatore P, Consigli C, Haass C, Lista G, Agosti M, Mosca F, Vento G. Nasal high-frequency oscillatory ventilation and CO2 removal: A randomized controlled crossover trial. Pediatr Pulmonol. 2018 Sep;53(9):1245-1251. doi: 10.1002/ppul.24120. Epub 2018 Jul 12.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2021_01_09
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.