Health Promoting Work Schedules: The Effect of Abolishing Quick Returns
NCT ID: NCT04693182
Last Updated: 2022-02-16
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
2700 participants
INTERVENTIONAL
2021-01-01
2022-05-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Methods and analysis A parallel-group cluster RCT in a target sample of more than 4000 healthcare workers at Haukeland University Hospital in Norway will be conducted. More than 70 hospital units will be assessed for eligibility and randomized to a work schedule without quick returns for six months or continue with a schedule that maintains quick returns. The primary outcome is objective records of sickness absence; secondary outcomes are questionnaire data (n ≈ 4000 invited) on sleep and functioning, physical and psychological health, work-related accidents, and turnover intention. For a subsample, sleep diaries and objective sleep registrations with radar technology (n ≈ 50) will be collected.
Ethics and dissemination The study protocol was approved by the Regional Committee for Medical and Health Research Ethics in Western Norway (2020/200386). Findings from the trial will be disseminated in peer-reviewed journals and presented at national and international conferences. Exploratory analyses of potential mediators and moderators will be reported. User-friendly outputs will be disseminated to relevant stakeholders, unions and other relevant societal groups.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Quick Returns - Sleep, Cognitive Functions and Individual Differences
NCT05162105
Self-help Book for Shift Work Related Problems
NCT05633498
SHIFTPLAN: an RCT Investigating the Effect of a Shift Work Intervention on Fatigue, Sleep and Health.
NCT05452096
Shift Work Intervention Strategies for Night Shift Workers
NCT06147089
Night Shift Work and Biomarkers of Obesity Risk in Hospital and Industry Workers
NCT06288568
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Research design A cluster randomized controlled trial comparing a work schedule abolishing quick returns (intervention) with that of a work schedule maintaining a normal amount of quick returns (control) will be conducted. The clusters represent hospital units that are randomly selected to receive (or not receive) the intervention. 'Normal amount of quick returns' refer to that which is the common practice at the respective hospital unit in recent years (i.e., when no explicit changes have been made to the work schedule), which means that the total number of quick returns at the unit will vary from 329-2356 per year. The hospital units were randomized to one of the two conditions in September 2020, of which the autumn of 2020 was spent planning the shift schedule for 2021 (i.e., removing quick returns for the intervention group and leaving quick returns untouched for the control group), with the intervention period commencing from February/March 2021 for most units. The intervention period in this study is six calendar months. Most units in this trial start the intervention period in February/March 2021, but some units will, for practical reasons, start the intervention period in the second half of the rotation year, i.e. from August/September 2021 or later.
The primary outcome is sickness absence retrieved from the local records kept by the hospital (including short- and long-term sick leave). The baseline measurements will be sickness absence from the year preceding the intervention, which for each individual participant will be matched on duration and season to that of the intervention period. Sickness absence data will be retrieved from the local records kept by the hospital (Vedaa, Pallesen et al. 2017). This record includes information about the date of any absence of the individual employee, implying that it includes information about both short- and long-term sickness absence. Further, these data include information on whether the absence is self-certified or whether it is certified by a physician, whether the absence is due to a sick child of whom the employee has caretaker responsibility of, and whether the absence is due to COVID-19 related issues (e.g., quarantine). The use of register data will not require individual consent. However, a consent-based part of the trial will also be conducted, in which secondary outcome measures will be collected via questionnaire at baseline and six-month follow-up. All employees (n ≈ 4000) at the randomized units will be asked to complete a digital questionnaire made available via the hospital's internal website. Baseline assessment will occur prior to the intervention period, and follow-up assessment will occur towards the end of the intervention period. A subsample (n ≈ 50) will be asked to objectively record their sleep with advanced radar technomogy (Somnofy™) and subjectively with sleep diaries for ≥1 week at the baseline and follow-up assessments, respectively.
Participants and procedure Recruitment This trial is carried out in close collaboration with the human resources department at Haukeland University Hospital. All hospital care units that have 24-hour staffing at the hospital will be randomized, in which all healthcare workers working shifts will be included, with the exception of physicians. Physicians will not be included since they often have a different shift schedule and compensation scheme compared to the other occupational groups. Hereinafter, 'all employees' refer to all healthcare workers engaged in shift work at the randomised hospital units, with the exception of physicians. All employees (n ≈ 4000) at the randomized hospital units will be asked to complete a questionnaire prior to and at the end of the intervention period. Recruitment for this part of the trial will take place via the hospital's internal website. Researchers and human resources personnel at the hospital will attend staff meetings at all included units to inform about the research project and encourage participation. A subsample of n ≈ 50 randomly selected employees (evenly distributed from the intervention and the control units) will be recruited for the sleep monitoring section of the trial.
Randomisation and masking The randomization in this trial occurred at the cluster level, in which hospital units constituted the clusters. Hospital units can vary in terms of how much staff they need over the 24-hour day, hence, the work schedule and the occurrence of, for example, quick returns and night shifts can vary across the units. Similar units were therefore grouped together based on the fact that they shared some attributes or characteristics. Then a stratified randomization was performed to the two study conditions in a 1: 1 ratio. One subgroup could, for example, consist of units with emergency functions, another with intensive care functions, one with mental health care, and one with maternity care, etc. In total we had 10 strata and the sizes of each stratum varied between 2 and 19 hospital units. The randomization list for each stratum was generated by the online randomization webpage, www.randomization.com, and the list for each stratum was saved.
It is not possible for participants to be blinded to the group to which they are assigned. However, statistical analyses will be done by a researcher who is masked to group allocation.
Sample size In this trial, all available hospital units at Haukeland University Hospital with healthcare workers who work rotating shifts will be assessed for eligibility. This includes 76 units and 4260 healthcare workers. Based on previous published data5 we have calculated that a total of 2028 participants is sufficient to reveal a difference in days of sick leave of 0.9 and 1.25 with an ICC of 0.1 and an average size of the units of 52 (calculation made in: StataCorp. 2015).33 Thus, with the planned recruitment strategy (i.e., invite \>70 units and \>4000 healthcare workers) we expect to exceed this number and be well within the number of participants required for the primary outcome variable.
Data analysis plan All analyses will be conducted based on the intention-to-treat population, unless otherwise stated. To examine the effects of a shift schedule abated of quick returns on primary and secondary outcomes, the observed rates or scores will be analysed by means of latent growth models (or other equivalent models such as generalized linear mixed models). The observed rates or scores before and during the intervention period will be modelled by a random intercept and a fixed slope. The effect of the intervention will be estimated by using the group variable (intervention vs. control) as a predictor of the slope. Between-group effect sizes (Cohen's d) will be calculated by dividing the mean difference in estimated change in scores from baseline to the follow-up assessment by the pooled SD at baseline. Robust maximum likelihood will be used as the estimator, providing unbiased estimates under the assumption of data being missing at random,(Enders 2010) which might be partly met through the inclusion of baseline scores to the model. The primary outcome measure in this trial is sickness absence data retrieved from the register at the hospital, in which we expect no missing data. However, it is reasonable to expect some missing data on the secondary outcome measures, as data are collected through questionnaire or via the sleep radar.
As some data for the follow-up questionnaire and sleep radar assessment will be missing not at random, the robustness of the results under the missing-at-random assumption will be tested by sensitivity analyses in which the missing scores at follow-up will be replaced by baseline values for each respective individual. These sensitivity analyses will only be performed on selected variables depending on the focus in the respective article.
The intention-to-treat analyses may be accompanied by selected per-protocol analyses in which we, based on payroll data, define a group that has completely abolished or had a satisfactory reduction in the number of quick returns over the intervention period.
The primary outcome of sick leave will mainly be analysed in terms of the total number of sickness absence days and periods (spells) for a given period before compared to during the intervention period (Vedaa, Pallesen et al. 2017). The models of sickness absence will take into account the zero inflation in this type of data. Other operationalisations of sickness absence might also be considered in accordance with recommendations in the literature (Hensing, Alexanderson et al. 1998). For a further investigation of the sickness absence data, we will consider the use of other models where we treat time differently. For example, we will consider models where we look at the time to the first sick leave episode for the two intervention groups, with a time-dependent covariate for the number of quick returns (ie, a variable that increases by 1 each time the person has a quick return). Another possibility is to say that participants start at "0" every time the person has a quick return, and to measure time from the last quick return to the first subsequent sick leave episode, while adjusting for repeated observations with e.g. robust variance estimate (the non-quick return group will then only be followed from the start of the intervention, given that they in fact have no quick returns). Another option is to set up a model for time from sick leave to return to work.
Since the introduction of a work schedule without quick returns may entail an alternative schedule with an increase in other undesirable characteristics (e.g., more consecutive evening shifts), we will consider conducting analyses that adjust for such characteristics.
Mediator and moderator analyses will be performed for exploratory purposes, based on the basic principle for such analyses in randomised controlled trials as described by others ((e.g., Kraemer, Wilson et al. 2002)). For example, some of the data collected on demographics, sleep-related personality traits (rCTI and MEQ), mental health, among others, can be used to examine factors that may moderate the impact of the intervention.
References
Enders, C. K. (2010). Applied missing data analysis. New York, NY, US, Guilford Press.
Hensing, G., et al. (1998). "How to measure sickness absence? Literature review and suggestion of five basic measures." Scandinavian journal of public health 26: 133-144.
Kraemer, H. C., et al. (2002). "Mediators and moderators of treatment effects in randomized clinical trials." Archives of General Psychiatry 59: 877-883.
Vedaa, Ø., et al. (2017). "Short rest between shift intervals increases the risk of sick leave: a prospective registry study." Occupational and Environmental Medicine 74: 496-501.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
PREVENTION
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
With quick returns
The control condition in this trial implies that employees maintain the same number of quick returns as in previous years for the six-month intervention period. Hospital units in the control group are not expected to experience any increase in the number of quick returns.
No interventions assigned to this group
Without quick returns
The intervention entails implementing a shift schedule which abolishes quick returns for a six-month intervention period. The number of quick returns in the various hospital units in this trial varies from 329-2356 per year. The intervention means that this number is abolished or reduced as much as possible. For practical reasons it is reasonable to expect that for many of the units it may be a matter of reducing rather than completely abolishing quick returns, as ensuring adequate staffing (e.g., due to sickness absence), often on short-notice make it impossible to comply with the rule of avoiding quick returns. The human resources department at the hospital assisted shift planners in scheduling shift schedules without quick returns.
Shift schedule without quick returns
The intervention entails implementing a shift schedule which abolishes or substantially reduces the number of quick returns (less than 11 hours of rest between two shifts) for a six-month intervention period.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Shift schedule without quick returns
The intervention entails implementing a shift schedule which abolishes or substantially reduces the number of quick returns (less than 11 hours of rest between two shifts) for a six-month intervention period.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Employees must have \>50% position.
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Bergen
OTHER
Norwegian Institute of Public Health
OTHER_GOV
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Anette Harris, PhD
Role: PRINCIPAL_INVESTIGATOR
University of Bergen, Norway
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Haukeland University Hospital
Bergen, Vestland, Norway
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Djupedal ILR, Harris A, Svensen E, Lie SA, Wang ALH, Pallesen S, Waage S, Nielsen MB, Sunde E, Bjorvatn B, Holmelid O, Vedaa O. Shift Schedule With Fewer Short Daily Rest Periods and Sickness Absence Among Health Care Workers: A Cluster Randomized Clinical Trial. JAMA Netw Open. 2025 Sep 2;8(9):e2531568. doi: 10.1001/jamanetworkopen.2025.31568.
Djupedal ILR, Harris A, Svensen E, Pallesen S, Waage S, Nielsen MB, Sunde E, Bjorvatn B, Holmelid O, Vedaa O. Effects of a work schedule with abated quick returns on insomnia, sleepiness, and work-related fatigue: results from a large-scale cluster randomized controlled trial. Sleep. 2024 Jul 11;47(7):zsae086. doi: 10.1093/sleep/zsae086.
Vedaa O, Djupedal ILR, Svensen E, Waage S, Bjorvatn B, Pallesen S, Lie SA, Nielsen M, Harris A. Health-promoting work schedules: protocol for a large-scale cluster randomised controlled trial on the effects of a work schedule without quick returns on sickness absence among healthcare workers. BMJ Open. 2022 Apr 15;12(4):e058309. doi: 10.1136/bmjopen-2021-058309.
Related Links
Access external resources that provide additional context or updates about the study.
Link to information letter to participants
Link to the study website
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
303671
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.