Co-administration of Dexmedetomidine in Carotid Endarterectomy (CEA)
NCT ID: NCT04662177
Last Updated: 2020-12-19
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE4
23 participants
INTERVENTIONAL
2018-11-21
2020-12-04
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The central acting α2-agonist Dexmedetomidine could help to reduce the amount of Propofol without influencing electrophysical studies. However, no data are currently known for practical use in carotid endarterectomy with Propofol with co-administration of Dexmedetomidine in conjunction with electrophysiological studies (SSEPs and MEPs).
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Somatosensory evoked potentials (SSEP), and trans-cranial Doppler (TCD) flow velocity in the middle cerebral artery are measured to detect ischemia. A significant decrease in TCD velocity and/or SSEPs amplitudes during cross-clamping of the internal carotid artery (ICA) gets treated with an adapted increase of arterial blood pressure or placement of a shunt. Intraoperative monitoring and recording of data in every patient undergoing CEA median nerve SEPs and MCA flow velocity have been constantly monitored by an additional intraoperative monitoring (IOM) technician who has been trained and certified in the assessment of intraoperative monitoring. The median nerve SEP amplitudes are recorded at least at these events: baseline value before skin incision, EEG burst suppression before cross clamping of the internal carotid artery, at time of ICA cross clamping, 10 minutes after cross clamping or immediately after placement of shunt (ICA clamping), reperfusion of ICA and haemostasis / end of surgery. The predefined criterion for temporary shunting was the reduction of more than 50% of the SEP amplitude.
Median nerve somatosensory evoked potentials (SEPs) were performed by stimulation at the wrist with a pair of needle electrodes (Inomed Germany®). This is a single pulse stimulation with 0.5 ms pulse duration and a low repetition rate ranging from 0.7 - 2.3 Hz. Recording is performed via corkscrew electrodes placed accordingly to the 10-20-EEG system on the patient scalp. For the right median nerve SEP C3´/Fz and for the left median nerve SEP C4´/Fz is chosen as standard derivation. Alternatively, Cz' or the contralateral Cp' served as reference to improve quality of recording. To improve the signal to noise ratio the responses are averaged 150-200 times.
The investigator use the somatosensive evoked potentials (SSEPs) to verify the functional integrity of the nervous system. Standardized surgical and anaesthesiological measures at the CEA with defined EEG endpoints and depending on the anaesthetic effect can - in normal EEG and SSEPs - effectively exclude severe global ischemia. The effects of burst suppression and the volatile anaesthetics on SSEPs were also investigated and showed no significant difference. Since 2016, motor-induced evoked potentials (MEPs) have also been used, which are, however, suppressed by volatile anaesthetics in a dose-dependent manner. On the other hand, Dexmedetomidine in combination with Propofol seems to suppress only insignificantly.
The indication spectrum for the centrally acting α2-agonist Dexmedetomidine has been increasingly extended since its approval in Switzerland. In addition to the use of Dexmedetomidine in the intensive care units, Dexmedetomidine is also increasingly being used perioperatively up to premedication in children. In some studies, an anaesthetic reduction of 40-60% could be achieved or the opioid consumption after the addition of a α2-agonist could be reduced by 50-75%. The blood pressure response to a Dexmedetomidine dose depends on the rate of infusion). In addition, administration of Dexmedetomidine does not result in respiratory depression or compromising of the respiratory tract. It has been shown that Dexmedetomidine can cause a "sleep-like" sedation state and this state can be interrupted by verbal stimuli), examined the EEG activity in sedations on voluntary subjects compared to a control group with physiological sleep pattern. In this study, it was shown that the EEG spindle activity in subjects with Dexmedetomidine infusion was comparable to that of a physiological non-rapid eye-movement (nonREM) sleep stage II in the control tests. The authors concluded from their investigations that a "sleep-like state" (stage II non-REM) can be achieved by the Dexmed-etomidine infusion. However, no data are currently known for practical use in carotid endarterectomy with Propofol and Dexmedetomidine in conjunction with electrophysiological studies (somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP)).
In addition, there is a high risk of postoperative delirium (POD) in many of these patients. This was examined in a recently published Lancet study by Xian Su and colleagues in 700 patients with non-cardiac interventions in elderly patients). A reduction of the delirium incidence from 23% to 9% was found after a low-dose Dexmedetomidine dose of 0.1 μg/kg body weight/h. In addition, Dexmedetomidine is attributed a neuroprotective effect against ischemic and hypoxic influences). Other animals-experimental studies indicate neuroprotection in ischemic insult and subsequent reperfusion).
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Group 1: Co-administration of dexmedetomidine and propofol with electrophysiological studies
The group 1 starts with a bolus of dexmedetomidine 0.4 µg/kg over 10 minutes, followed by continuous infusion of dexmedetomidine 0.4 µg/kg/h until the end of burst suppression.
Dexmedetomidine
The study participants are divided into two groups: Group 1 starts with a bolus of dexmedetomidine 0.4 µg/kg over 10 minutes, followed by con-tinuous infusion of dexmedetomidine 0.4 µg/kg/h until the end of burst suppression. Group 2 receives the standard anaesthesia management.
Group 2: Standard anaesthesia with propofol and electrophysiological studies
The group 2 receive standard anaesthesia management.
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Dexmedetomidine
The study participants are divided into two groups: Group 1 starts with a bolus of dexmedetomidine 0.4 µg/kg over 10 minutes, followed by con-tinuous infusion of dexmedetomidine 0.4 µg/kg/h until the end of burst suppression. Group 2 receives the standard anaesthesia management.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* ASA physical status 1-4
* written informed consent provided.
Exclusion Criteria
* higher grade atrioventricular block without pacemaker
* severe hypovolaemia or bradycardia
* uncontrolled hyper- or hypotension
* hypersensibility concerning the active substance dexmedetomidine or any other component
* serve liver disease
* known malignant hyperthermia
* cardiovascular instability or severe heart failure (\> NYHA III)
* limited peripheral autonomic activity
* pregnancy
* rejection or lack of consent of the patient or their relatives.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Insel Gruppe AG, University Hospital Bern
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Christian cv Vetter, MD
Role: PRINCIPAL_INVESTIGATOR
University of Bern
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Inselspital Bern
Bern, , Switzerland
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Vetter C, Meyer ER, Seidel K, Bervini D, Huber M, Krejci V. Co-administration of dexmedetomidine with total intravenous anaesthesia in carotid endarterectomy reduces requirements for propofol and improves haemodynamic stability: A single-centre, prospective, randomised controlled trial. Eur J Anaesthesiol. 2025 Mar 1;42(3):255-264. doi: 10.1097/EJA.0000000000002099. Epub 2024 Nov 11.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2018-00220
Identifier Type: -
Identifier Source: org_study_id