Lung Ultrasound Score and Pediatric Intensive Care Outcomes (LUS-PICO)
NCT ID: NCT04660448
Last Updated: 2022-04-12
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
650 participants
OBSERVATIONAL
2020-12-01
2021-11-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Point-of-Care Lung Ultrasound for Prognosis in Critically Ill Infants With Acute Lower Respiratory Tract Infection
NCT06425107
Diagnostic Role of Chest Ultrasound in Children Presenting With Respiratory Distress in Pediatric Intensive Care Unit (PICU) Compared to Chest X-ray
NCT04328220
POCUS of the Pediatric Critical Airway
NCT06212037
Pulmonary Ultrasound for the Assessment of Atelectasis in Anesthetized Children Using a Laryngeal Mask Airway.
NCT06214312
Lung Ultrasound Guided Choice of Best Positive End-Expiratory Pressure in Neonatal Anesthesia
NCT05737407
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
To date, pediatric studies addressing the potential relationship between LUS and the outcome of critically ill children are scarce and limited to postoperative cardiac patients and infants with bronchiolitis.
In our research, children from 1 month to 18 years of age admitted to pediatric intensive care unit (PICU) who fulfill inclusion criteria will be recruited and will undergo point of care lung ultrasound examination at 12 ± 6 hours and at 48-72 hours from admission. Clinical data will be recorded and LUS will be calculated. The main objective of our study is to assess the potential role of LUS (as a semiquantitative indicator or lung aeration) as a feasible and reliable outcome prediction tool in children admitted to PICU. Secondary objectives will include to analyze the correlations between LUS and the need and length of ventilatory support, inflammatory and cardiac markers, hydric balance, renal replacement therapies requirement, and validated prognostic scales, as well as age, underlying disease, co-morbidities, length-of-stay, and other clinical characteristics of included children.
Patients with acute respiratory distress syndrome (ARDS) or shock during PICU admission time will also undergo additional lung ultrasound examinations at 12 ± 6 hours and at 48-72 hours from ARDS or shock diagnosis, as these subgroups represent a very specific and severe cohort of patients, which merits further analysis.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
OTHER
PROSPECTIVE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Bedside lung ultrasound examination
Lung ultrasound exploring 12 areas (6 in each lung) at 12 +/- 6 hours and at 48-72 hours from PICU admission. Clinical and analytical data collection coinciding with ultrasound imaging and during follow-up while admitted to PICU.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
2. \- Children with chronic pulmonary pathology (cystic fibrosis, bronchopulmonary dysplasia, etc…)
3. \- Preoperative admissions in a stable condition (eg. Patient admitted previously to cardiac surgery)
4. \- Inability to obtain interpretable ultrasonographic images due to bad ultrasonographic window
5. \- Non disponibility of investigator
6. \- High frequency ventilation
7. \- Lack of clinical data
1 Month
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Fundación para la Investigación Biosanitaria del Principado de Asturias
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Guillermo M. Albaiceta, MD PhD
Role: STUDY_CHAIR
HUCA-FINBA. Universidad de Oviedo
Juan Mayordomo-Colunga, MD PhD
Role: PRINCIPAL_INVESTIGATOR
HUCA-FIBA
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hospital Universitario Central de Asturias (HUCA)
Oviedo, Principality of Asturias, Spain
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Singh Y, Tissot C, Fraga MV, Yousef N, Cortes RG, Lopez J, Sanchez-de-Toledo J, Brierley J, Colunga JM, Raffaj D, Da Cruz E, Durand P, Kenderessy P, Lang HJ, Nishisaki A, Kneyber MC, Tissieres P, Conlon TW, De Luca D. International evidence-based guidelines on Point of Care Ultrasound (POCUS) for critically ill neonates and children issued by the POCUS Working Group of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Crit Care. 2020 Feb 24;24(1):65. doi: 10.1186/s13054-020-2787-9.
Lichtenstein DA. BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill. Chest. 2015 Jun;147(6):1659-1670. doi: 10.1378/chest.14-1313.
Xirouchaki N, Kondili E, Prinianakis G, Malliotakis P, Georgopoulos D. Impact of lung ultrasound on clinical decision making in critically ill patients. Intensive Care Med. 2014 Jan;40(1):57-65. doi: 10.1007/s00134-013-3133-3. Epub 2013 Oct 25.
Bouhemad B, Brisson H, Le-Guen M, Arbelot C, Lu Q, Rouby JJ. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med. 2011 Feb 1;183(3):341-7. doi: 10.1164/rccm.201003-0369OC. Epub 2010 Sep 17.
Mojoli F, Bouhemad B, Mongodi S, Lichtenstein D. Lung Ultrasound for Critically Ill Patients. Am J Respir Crit Care Med. 2019 Mar 15;199(6):701-714. doi: 10.1164/rccm.201802-0236CI.
Zong HF, Guo G, Liu J, Bao LL, Yang CZ. Using lung ultrasound to quantitatively evaluate pulmonary water content. Pediatr Pulmonol. 2020 Mar;55(3):729-739. doi: 10.1002/ppul.24635. Epub 2020 Jan 9.
Rouby JJ, Arbelot C, Gao Y, Zhang M, Lv J, An Y, Chunyao W, Bin D, Valente Barbas CS, Dexheimer Neto FL, Prior Caltabeloti F, Lima E, Cebey A, Perbet S, Constantin JM; APECHO Study Group. Training for Lung Ultrasound Score Measurement in Critically Ill Patients. Am J Respir Crit Care Med. 2018 Aug 1;198(3):398-401. doi: 10.1164/rccm.201802-0227LE. No abstract available.
Volpicelli G, Mussa A, Garofalo G, Cardinale L, Casoli G, Perotto F, Fava C, Frascisco M. Bedside lung ultrasound in the assessment of alveolar-interstitial syndrome. Am J Emerg Med. 2006 Oct;24(6):689-96. doi: 10.1016/j.ajem.2006.02.013.
Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, Melniker L, Gargani L, Noble VE, Via G, Dean A, Tsung JW, Soldati G, Copetti R, Bouhemad B, Reissig A, Agricola E, Rouby JJ, Arbelot C, Liteplo A, Sargsyan A, Silva F, Hoppmann R, Breitkreutz R, Seibel A, Neri L, Storti E, Petrovic T; International Liaison Committee on Lung Ultrasound (ILC-LUS) for International Consensus Conference on Lung Ultrasound (ICC-LUS). International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012 Apr;38(4):577-91. doi: 10.1007/s00134-012-2513-4. Epub 2012 Mar 6.
Lichter Y, Topilsky Y, Taieb P, Banai A, Hochstadt A, Merdler I, Gal Oz A, Vine J, Goren O, Cohen B, Sapir O, Granot Y, Mann T, Friedman S, Angel Y, Adi N, Laufer-Perl M, Ingbir M, Arbel Y, Matot I, Szekely Y. Lung ultrasound predicts clinical course and outcomes in COVID-19 patients. Intensive Care Med. 2020 Oct;46(10):1873-1883. doi: 10.1007/s00134-020-06212-1. Epub 2020 Aug 28.
Dransart-Raye O, Roldi E, Zieleskiewicz L, Guinot PG, Mojoli F, Mongodi S, Bouhemad B. Lung ultrasound for early diagnosis of postoperative need for ventilatory support: a prospective observational study. Anaesthesia. 2020 Feb;75(2):202-209. doi: 10.1111/anae.14859. Epub 2019 Sep 23.
Gargani L, Lionetti V, Di Cristofano C, Bevilacqua G, Recchia FA, Picano E. Early detection of acute lung injury uncoupled to hypoxemia in pigs using ultrasound lung comets. Crit Care Med. 2007 Dec;35(12):2769-74. doi: 10.1097/01.CCM.0000287525.03140.3F.
Yin W, Zou T, Qin Y, Yang J, Li Y, Zeng X, Kang Y; Chinese Critical Ultrasound Study Group (CCUSG). Poor lung ultrasound score in shock patients admitted to the ICU is associated with worse outcome. BMC Pulm Med. 2019 Jan 3;19(1):1. doi: 10.1186/s12890-018-0755-9.
Brahier T, Meuwly JY, Pantet O, Brochu Vez MJ, Gerhard Donnet H, Hartley MA, Hugli O, Boillat-Blanco N. Lung Ultrasonography for Risk Stratification in Patients with Coronavirus Disease 2019 (COVID-19): A Prospective Observational Cohort Study. Clin Infect Dis. 2021 Dec 6;73(11):e4189-e4196. doi: 10.1093/cid/ciaa1408.
Bueno-Campana M, Sainz T, Alba M, Del Rosal T, Mendez-Echevarria A, Echevarria R, Tagarro A, Ruperez-Lucas M, Herrreros ML, Latorre L, Calvo C. Lung ultrasound for prediction of respiratory support in infants with acute bronchiolitis: A cohort study. Pediatr Pulmonol. 2019 Jun;54(6):873-880. doi: 10.1002/ppul.24287. Epub 2019 Mar 5.
Ingelse SA, Pisani L, Westdorp MHA, Almakdase M, Schultz MJ, van Woensel JBM, Bem RA. Lung ultrasound scoring in invasive mechanically ventilated children with severe bronchiolitis. Pediatr Pulmonol. 2020 Oct;55(10):2799-2805. doi: 10.1002/ppul.24974. Epub 2020 Jul 30.
Kaskinen AK, Martelius L, Kirjavainen T, Rautiainen P, Andersson S, Pitkanen OM. Assessment of extravascular lung water by ultrasound after congenital cardiac surgery. Pediatr Pulmonol. 2017 Mar;52(3):345-352. doi: 10.1002/ppul.23531. Epub 2016 Oct 14.
Cantinotti M, Giordano R, Scalese M, Marchese P, Franchi E, Viacava C, Molinaro S, Assanta N, Koestenberger M, Kutty S, Gargani L, Ait-Ali L. Prognostic Value of a New Lung Ultrasound Score to Predict Intensive Care Unit Stay in Pediatric Cardiac Surgery. Ann Thorac Surg. 2020 Jan;109(1):178-184. doi: 10.1016/j.athoracsur.2019.06.057. Epub 2019 Aug 7.
Pollack MM, Holubkov R, Funai T, Berger JT, Clark AE, Meert K, Berg RA, Carcillo J, Wessel DL, Moler F, Dalton H, Newth CJ, Shanley T, Harrison RE, Doctor A, Jenkins TL, Tamburro R, Dean JM; Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network. Simultaneous Prediction of New Morbidity, Mortality, and Survival Without New Morbidity From Pediatric Intensive Care: A New Paradigm for Outcomes Assessment. Crit Care Med. 2015 Aug;43(8):1699-709. doi: 10.1097/CCM.0000000000001081.
Senna S, Ong C, Wong JJ, Allen JC Jr, Sultana R, Lee JH. Prediction of Acquired Morbidity Using Illness Severity Indices in Pediatric Intensive Care Patients. Pediatr Crit Care Med. 2020 Nov;21(11):e972-e980. doi: 10.1097/PCC.0000000000002417.
Payen V, Jouvet P, Lacroix J, Ducruet T, Gauvin F. Risk factors associated with increased length of mechanical ventilation in children. Pediatr Crit Care Med. 2012 Mar;13(2):152-7. doi: 10.1097/PCC.0b013e3182257a24.
Farias JA, Frutos F, Esteban A, Flores JC, Retta A, Baltodano A, Alia I, Hatzis T, Olazarri F, Petros A, Johnson M. What is the daily practice of mechanical ventilation in pediatric intensive care units? A multicenter study. Intensive Care Med. 2004 May;30(5):918-25. doi: 10.1007/s00134-004-2225-5. Epub 2004 Mar 17.
Curley MA, Wypij D, Watson RS, Grant MJ, Asaro LA, Cheifetz IM, Dodson BL, Franck LS, Gedeit RG, Angus DC, Matthay MA; RESTORE Study Investigators and the Pediatric Acute Lung Injury and Sepsis Investigators Network. Protocolized sedation vs usual care in pediatric patients mechanically ventilated for acute respiratory failure: a randomized clinical trial. JAMA. 2015 Jan 27;313(4):379-89. doi: 10.1001/jama.2014.18399.
Wolfler A, Calderoni E, Ottonello G, Conti G, Baroncini S, Santuz P, Vitale P, Salvo I; SISPE Study Group. Daily practice of mechanical ventilation in Italian pediatric intensive care units: a prospective survey. Pediatr Crit Care Med. 2011 Mar;12(2):141-6. doi: 10.1097/PCC.0b013e3181dbaeb3.
Menon K, McNally D, O'Hearn K, Acharya A, Wong HR, Lawson M, Ramsay T, McIntyre L, Gilfoyle E, Tucci M, Wensley D, Gottesman R, Morrison G, Choong K; Canadian Critical Care Trials Group. A Randomized Controlled Trial of Corticosteroids in Pediatric Septic Shock: A Pilot Feasibility Study. Pediatr Crit Care Med. 2017 Jun;18(6):505-512. doi: 10.1097/PCC.0000000000001121.
Morris JV, Ramnarayan P, Parslow RC, Fleming SJ. Outcomes for Children Receiving Noninvasive Ventilation as the First-Line Mode of Mechanical Ventilation at Intensive Care Admission: A Propensity Score-Matched Cohort Study. Crit Care Med. 2017 Jun;45(6):1045-1053. doi: 10.1097/CCM.0000000000002369.
Khemani RG, Smith LS, Zimmerman JJ, Erickson S; Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015 Jun;16(5 Suppl 1):S23-40. doi: 10.1097/PCC.0000000000000432.
Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014 Dec;40(12):1795-815. doi: 10.1007/s00134-014-3525-z. Epub 2014 Nov 13.
Matics TJ, Sanchez-Pinto LN. Adaptation and Validation of a Pediatric Sequential Organ Failure Assessment Score and Evaluation of the Sepsis-3 Definitions in Critically Ill Children. JAMA Pediatr. 2017 Oct 2;171(10):e172352. doi: 10.1001/jamapediatrics.2017.2352. Epub 2017 Oct 2.
Leteurtre S, Duhamel A, Salleron J, Grandbastien B, Lacroix J, Leclerc F; Groupe Francophone de Reanimation et d'Urgences Pediatriques (GFRUP). PELOD-2: an update of the PEdiatric logistic organ dysfunction score. Crit Care Med. 2013 Jul;41(7):1761-73. doi: 10.1097/CCM.0b013e31828a2bbd.
Pollack MM, Patel KM, Ruttimann UE. PRISM III: an updated Pediatric Risk of Mortality score. Crit Care Med. 1996 May;24(5):743-52. doi: 10.1097/00003246-199605000-00004.
Gaies MG, Jeffries HE, Niebler RA, Pasquali SK, Donohue JE, Yu S, Gall C, Rice TB, Thiagarajan RR. Vasoactive-inotropic score is associated with outcome after infant cardiac surgery: an analysis from the Pediatric Cardiac Critical Care Consortium and Virtual PICU System Registries. Pediatr Crit Care Med. 2014 Jul;15(6):529-37. doi: 10.1097/PCC.0000000000000153.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
FINBA_CritLab_3
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.