The Effectiveness in the Treatment of Long Bone Defect Using 3D-printed Implant
NCT ID: NCT04449211
Last Updated: 2024-09-03
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
EARLY_PHASE1
10 participants
INTERVENTIONAL
2023-10-06
2024-12-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Clinical Effects of Large Segmental Bone Defects With 3D Printed Titanium Implant
NCT03941028
Using 3.3mm Screw Tap and Cutting Resistance to Evaluate Bone Quality Around Dental Implant
NCT00172718
Implant-Abutment Interface Design on Bone and Soft Tissue Levels Around Implants Placed Using Different Transcrestal Sinus Floor Elevation
NCT02953392
3D Printed Donor Tooth Replica in Autotransplantation of Teeth
NCT04933409
Clinical Success of Short Dental Implants Alone and Standard Dental Implants Combined With Osteotome Sinus Floor Elevation in Posterior Maxillae
NCT02350075
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Participants with massive bone defect
Adult participants with health insurance regardless of sex having bone defect greater than 5cm due to trauma or tumour resection agree to participate the research.
The customised 3D-Printed implant is manufactured and undergoes post-processing treatment before being ready for implantation surgery.
Implantation
Reconstructing the long bone defect with 3D-printed customised Titanium alloy implant
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Implantation
Reconstructing the long bone defect with 3D-printed customised Titanium alloy implant
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* Participants do not agree to undergo surgery
* Participants with local infection or soft tissue defect
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Commonwealth Scientific and Industrial Research Organisation, Australia
OTHER_GOV
3 Dimensional Tech Vision Limited Company
UNKNOWN
Cho Ray Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Hung Do Phuoc, MD, PhD
Associate Professor
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Cho Ray hospital
Ho Chi Minh City, , Vietnam
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Nauth A, McKee MD, Einhorn TA, Watson JT, Li R, Schemitsch EH. Managing bone defects. J Orthop Trauma. 2011 Aug;25(8):462-6. doi: 10.1097/BOT.0b013e318224caf0.
Keating JF, Simpson AH, Robinson CM. The management of fractures with bone loss. J Bone Joint Surg Br. 2005 Feb;87(2):142-50. doi: 10.1302/0301-620x.87b2.15874. No abstract available.
Kironde E, Sekimpi P, Kajja I, Mubiri P. Prevalence and patterns of traumatic bone loss following open long bone fractures at Mulago Hospital. OTA Int. 2019 Mar 12;2(1):e015. doi: 10.1097/OI9.0000000000000015. eCollection 2019 Mar.
Le LC, Blum RW. Road traffic injury among young people in Vietnam: evidence from two rounds of national adolescent health surveys, 2004-2009. Glob Health Action. 2013 Jan 17;6:1-9. doi: 10.3402/gha.v6i0.18757.
Ivers RQ, Nguyen HT, La QN. Status of road safety and injury burden: Vietnam. J Orthop Trauma. 2014;28 Suppl 1:S50-1. doi: 10.1097/BOT.0000000000000098. No abstract available.
Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am. 2010 Jan;41(1):27-37; table of contents. doi: 10.1016/j.ocl.2009.07.011.
Iacobellis C, Berizzi A, Aldegheri R. Bone transport using the Ilizarov method: a review of complications in 100 consecutive cases. Strategies Trauma Limb Reconstr. 2010 Apr;5(1):17-22. doi: 10.1007/s11751-010-0085-9. Epub 2010 Mar 9.
Belthur MV, Conway JD, Jindal G, Ranade A, Herzenberg JE. Bone graft harvest using a new intramedullary system. Clin Orthop Relat Res. 2008 Dec;466(12):2973-80. doi: 10.1007/s11999-008-0538-3. Epub 2008 Oct 8.
Cricchio G, Lundgren S. Donor site morbidity in two different approaches to anterior iliac crest bone harvesting. Clin Implant Dent Relat Res. 2003;5(3):161-9. doi: 10.1111/j.1708-8208.2003.tb00198.x.
Robertson PA, Wray AC. Natural history of posterior iliac crest bone graft donation for spinal surgery: a prospective analysis of morbidity. Spine (Phila Pa 1976). 2001 Jul 1;26(13):1473-6. doi: 10.1097/00007632-200107010-00018.
Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, Lattanzi W, Logroscino G. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014 Oct;25(10):2445-61. doi: 10.1007/s10856-014-5240-2. Epub 2014 May 28.
Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012 Oct-Dec;8(4):114-24. doi: 10.4161/org.23306. Epub 2012 Oct 1.
de Alencar PG, Vieira IF. BONE BANKS. Rev Bras Ortop. 2015 Nov 16;45(6):524-8. doi: 10.1016/S2255-4971(15)30297-4. eCollection 2010 Nov-Dec.
Mauffrey C, Barlow BT, Smith W. Management of segmental bone defects. J Am Acad Orthop Surg. 2015 Mar;23(3):143-53. doi: 10.5435/JAAOS-D-14-00018.
Matsuno H, Yokoyama A, Watari F, Uo M, Kawasaki T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials. 2001 Jun;22(11):1253-62. doi: 10.1016/s0142-9612(00)00275-1.
Rotta, G., T. Seramak, and K. ZasiĆska, Estimation of Young's Modulus of the Porous Titanium Alloy with the Use of Fem Package. Advances in Materials Science, 2015. 15(4): p. 29 - 37
Elias, C.N., et al., Biomedical applications of titanium and its alloys. JOM, 2008. 60(3): p. 46-49
Heinl P, Muller L, Korner C, Singer RF, Muller FA. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008 Sep;4(5):1536-44. doi: 10.1016/j.actbio.2008.03.013. Epub 2008 Apr 10.
Rho JY, Ashman RB, Turner CH. Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech. 1993 Feb;26(2):111-9. doi: 10.1016/0021-9290(93)90042-d.
Niinomi, M., Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 1998. 243(1): p. 231-236
Head WC, Bauk DJ, Emerson RH Jr. Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin Orthop Relat Res. 1995 Feb;(311):85-90.
Shi L, Shi L, Wang L, Duan Y, Lei W, Wang Z, Li J, Fan X, Li X, Li S, Guo Z. The improved biological performance of a novel low elastic modulus implant. PLoS One. 2013;8(2):e55015. doi: 10.1371/journal.pone.0055015. Epub 2013 Feb 21.
Stoppie N, Van Oosterwyck H, Jansen J, Wolke J, Wevers M, Naert I. The influence of Young's modulus of loaded implants on bone remodeling: an experimental and numerical study in the goat knee. J Biomed Mater Res A. 2009 Sep 1;90(3):792-803. doi: 10.1002/jbm.a.32145.
Sumner DR, Turner TM, Igloria R, Urban RM, Galante JO. Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J Biomech. 1998 Oct;31(10):909-17. doi: 10.1016/s0021-9290(98)00096-7.
Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006 May;27(13):2651-70. doi: 10.1016/j.biomaterials.2005.12.002. Epub 2006 Jan 19.
Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, Matsushita T, Kokubo T, Matsuda S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:690-701. doi: 10.1016/j.msec.2015.10.069. Epub 2015 Oct 28.
Sallica-Leva E, Jardini AL, Fogagnolo JB. Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting. J Mech Behav Biomed Mater. 2013 Oct;26:98-108. doi: 10.1016/j.jmbbm.2013.05.011. Epub 2013 May 29.
Dallago M, Fontanari V, Torresani E, Leoni M, Pederzolli C, Potrich C, Benedetti M. Fatigue and biological properties of Ti-6Al-4V ELI cellular structures with variously arranged cubic cells made by selective laser melting. J Mech Behav Biomed Mater. 2018 Feb;78:381-394. doi: 10.1016/j.jmbbm.2017.11.044. Epub 2017 Dec 6.
Vasconcellos LM, Leite DO, Oliveira FN, Carvalho YR, Cairo CA. Evaluation of bone ingrowth into porous titanium implant: histomorphometric analysis in rabbits. Braz Oral Res. 2010 Oct-Dec;24(4):399-405. doi: 10.1590/s1806-83242010000400005.
Chang B, Song W, Han T, Yan J, Li F, Zhao L, Kou H, Zhang Y. Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta Biomater. 2016 Mar;33:311-21. doi: 10.1016/j.actbio.2016.01.022. Epub 2016 Jan 21.
Rybicki, F.J., 3D Printing in Medicine: A Practical Guide for Medical Professionals. 2017: Springer. 1 - 22
Zadpoor, A.A., Mechanical meta-materials. Materials Horizons, 2016. 3(5): p. 371-381
Imanishi J, Choong PF. Three-dimensional printed calcaneal prosthesis following total calcanectomy. Int J Surg Case Rep. 2015;10:83-7. doi: 10.1016/j.ijscr.2015.02.037. Epub 2015 Mar 10.
Aranda JL, Jimenez MF, Rodriguez M, Varela G. Tridimensional titanium-printed custom-made prosthesis for sternocostal reconstruction. Eur J Cardiothorac Surg. 2015 Oct;48(4):e92-4. doi: 10.1093/ejcts/ezv265. Epub 2015 Aug 4.
Kim D, Lim JY, Shim KW, Han JW, Yi S, Yoon DH, Kim KN, Ha Y, Ji GY, Shin DA. Sacral Reconstruction with a 3D-Printed Implant after Hemisacrectomy in a Patient with Sacral Osteosarcoma: 1-Year Follow-Up Result. Yonsei Med J. 2017 Mar;58(2):453-457. doi: 10.3349/ymj.2017.58.2.453.
Wen X, Gao S, Feng J, Li S, Gao R, Zhang G. Chest-wall reconstruction with a customized titanium-alloy prosthesis fabricated by 3D printing and rapid prototyping. J Cardiothorac Surg. 2018 Jan 8;13(1):4. doi: 10.1186/s13019-017-0692-3.
Lu Y, Chen G, Long Z, Li M, Ji C, Wang F, Li H, Lu J, Wang Z, Li J. Novel 3D-printed prosthetic composite for reconstruction of massive bone defects in lower extremities after malignant tumor resection. J Bone Oncol. 2019 Jan 25;16:100220. doi: 10.1016/j.jbo.2019.100220. eCollection 2019 Jun.
Marco, F.A.d., A.Z. Rozim, and S.R. Piedade, Estabilidade articular do joelho no quadro do
Luo W, Huang L, Liu H, Qu W, Zhao X, Wang C, Li C, Yu T, Han Q, Wang J, Qin Y. Customized Knee Prosthesis in Treatment of Giant Cell Tumors of the Proximal Tibia: Application of 3-Dimensional Printing Technology in Surgical Design. Med Sci Monit. 2017 Apr 7;23:1691-1700. doi: 10.12659/msm.901436.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
ChoRayH
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.