BCI-assisted MI Intervention in Subacute Stroke

NCT ID: NCT04353297

Last Updated: 2024-02-28

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

49 participants

Study Classification

INTERVENTIONAL

Study Start Date

2021-01-28

Study Completion Date

2023-12-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Stroke is a leading cause of long-term disability. Cost-effective post-stroke rehabilitation programs are critically needed. Brain-Computer Interface (BCI) systems which enable the modulation of EEG sensorimotor rhythms are promising tools to promote early improvements of motor rehabilitation outcomes after stroke. This project intends to boost this BCI application beyond the state of art by providing: i) evidence for a short/long-term efficacy in enhancing post-stroke functional hand motor recovery; and ii) quantifiable indices (beyond clinical scales) sensitive to stroke participant's response to a Promotoer (BCI system compatible with clinical setting) -based intervention. To these aims, a longitudinal randomized controlled trial will be performed in which, subacute stroke participants will undergo a Promotoer- assisted hand motor imagery training.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Stroke is a major public health and social care concern worldwide, being the leading cause of long-term disability in adults. The upper limb motor impairment commonly persists after stroke affecting patients' everyday life functional independence. Despite the intensive rehabilitation, the variability in the nature and the extent of upper limb recovery remains a crucial factor effecting rehabilitation outcomes. Electroencephalography (EEG) -based Brain Computer Interface (BCI) technology is a potential tool to promote functional motor recovery of upper limbs after stroke as shown in several randomized controlled trials. The investigators' multidisciplinary team was successful in designing, implementing and clinically validating a sensorimotor rhythm-based BCI combined with realistic visual feedback of upper limb to support hand motor imagery (MI) practice in stroke participants. However, important questions remain to be addressed to translate BCI in clinical practice such as defining whether the expected BCI-induced early improvements in functional motor outcomes can be sustained in a long-term after stroke. This requires advancements in the knowledge on brain functional re-organization after stroke and how this re-organization would correlate with the functional motor outcome (evidence-base medicine). Last but not least, the definition of the determinants of the patient response to-treatment is paramount to optimize the process of personalized medicine in rehabilitation. The fundamental of this project stems from the investigators' previous findings on the efficacy of BCI-assisted MI training in subacute stroke participants. These promising findings corroborated the idea that a relatively low-cost technique (i.e. EEG-based BCI) can be exploited to deliver a rehabilitative intervention (in this case MI) and prompted the research team to undertake a further translational effort by implementing an all-in-one BCI-supported MI training station- the Promotoer. In this project, the investigators will provide evidence for a persistency (up to 6 months) of the significant early improvement of hand motor function induced by the BCI-assisted MI training operated via the Promotoer. Task-specific training was recently reported to induce long-term improvements (6 months follow-up) in arm motor function after stroke. Thus, the hypothesis is that the BCI-based rewarding of hand MI tasks would promote long-lasting retention of early induced positive effect on motor performance with respect to MI task practiced in an open loop condition (i.e., without BCI). Further hypothesis is that such clinical improvement would be sustained by a long-lasting neuroplasticity changes that would be harnessed by the BCI -based intervention. This hypothesis rises from current evidence for an early enhancement of post-stroke plastic changes enabled by BCI- based trainings. To test this hypothesis, a longitudinal assessment of the brain network organization derived from advanced EEG signal processing will be performed. The heterogeneity of stroke makes prediction of treatment responder a great challenge. The investigators hypothesize that the longitudinal functional and neurophysiology assessment over 6 months from the intervention will allow for insights in biomarkers and potential predictors of stroke participants' response to the Promotoer training. Some of the well-recognized factors contributing to functional motor recovery after stroke such as the relation between lesion characteristics and patterns of post-stroke motor cortical re-organization (e.g., ipsilesional/contralesional primary and non-primary motor areas; cortico-spinal tract integrity, severity of motor deficits at baseline) will be taken into account.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Stroke Motor Disorders

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Eligible subacute stroke patients admitted to Fondazione Santa Lucia Hospital for standard rehabilitation care will be randomized in equal proportions (1:1 ratio) between Promotoer- BCI (BCI-assisted MI training- EXP) and Control (MI training-no BCI supported).
Primary Study Purpose

TREATMENT

Blinding Strategy

SINGLE

Outcome Assessors

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

BCI Group

(EEG-)BCI- assisted MI training delivered as add-on regimen (Standard physiotherapy-3 h/day, 5 day/week).

Group Type EXPERIMENTAL

EEG-based BCI system for (hand) Motor Imagery training

Intervention Type OTHER

The Promotoer is an all-in-one BCI-supported motor imagery (MI) training station, equipped with a computer, a commercial wireless Electroencephalography (EEG)/ Electromyography (EMG) system, a screen for therapist feedback (EEG and EMG activity monitoring) and screen for the real-time ecological feedback to patient - a custom software program that provides a for (personalized) visual representation of the patient's own hands. As such, this software allows the therapists to create an artificial reproduction of a given patient's hand/forearm by adjusting a digitally created image in shape, size, skin colour and orientation to match as much as possible the real patient hand/forearm. Training consists of the MI tasks only of the affected hand, grasping or finger extension in separate runs. The trial length will include a constant baseline period of 4 sec and a task period of maximally 10 sec for BCI intervention group. Each training session will consist of 4 runs (20 trials each).

Control Group

MI training without BCI support delivered as add-on regimen (Standard physiotherapy-3 h/day, 5 day/week).

Group Type ACTIVE_COMPARATOR

Motor Imagery training

Intervention Type OTHER

Training consists of MI tasks only of the affected hand, grasping or finger extension in separate runs. MI training will be delivered without BCI support (ie., the Promotoer system will not provide real-time feedback of MI performance; hand/forearm visual representation will remain standstill) with a dose/setting regimen equivalent to EXP intervention. The trial length will include a constant baseline period of 4 sec and a task period of maximally 4 sec. Each training session will consist of 4 runs (20 trials each).

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

EEG-based BCI system for (hand) Motor Imagery training

The Promotoer is an all-in-one BCI-supported motor imagery (MI) training station, equipped with a computer, a commercial wireless Electroencephalography (EEG)/ Electromyography (EMG) system, a screen for therapist feedback (EEG and EMG activity monitoring) and screen for the real-time ecological feedback to patient - a custom software program that provides a for (personalized) visual representation of the patient's own hands. As such, this software allows the therapists to create an artificial reproduction of a given patient's hand/forearm by adjusting a digitally created image in shape, size, skin colour and orientation to match as much as possible the real patient hand/forearm. Training consists of the MI tasks only of the affected hand, grasping or finger extension in separate runs. The trial length will include a constant baseline period of 4 sec and a task period of maximally 10 sec for BCI intervention group. Each training session will consist of 4 runs (20 trials each).

Intervention Type OTHER

Motor Imagery training

Training consists of MI tasks only of the affected hand, grasping or finger extension in separate runs. MI training will be delivered without BCI support (ie., the Promotoer system will not provide real-time feedback of MI performance; hand/forearm visual representation will remain standstill) with a dose/setting regimen equivalent to EXP intervention. The trial length will include a constant baseline period of 4 sec and a task period of maximally 4 sec. Each training session will consist of 4 runs (20 trials each).

Intervention Type OTHER

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

BCI- MI Intervention Control- MI Intervention

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* first ever unilateral stroke - confirmed by MRI;
* hemiplegia/hemiparesis from 1 to 6 months since stroke;
* age between 18 and 80 years;

Exclusion Criteria

* severe neglect and aphasia;
* dementia;
* severe spasticity - Modified Ashworth Scale \>4 at shoulder/elbow/wrist;
* Upper Extremity Fugl-Meyer Assessment (UE-FMA) \>47/60 score (60 is without considering 6 score point for tendon reflexes);
* Token test \>29 score;
* concomitant neurological disorders
Minimum Eligible Age

18 Years

Maximum Eligible Age

80 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Roma La Sapienza

OTHER

Sponsor Role collaborator

Istituto Superiore di Sanità

OTHER

Sponsor Role collaborator

I.R.C.C.S. Fondazione Santa Lucia

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Donatella Mattia

Professor, laboratory director

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Donatella Mattia, MD,PhD

Role: STUDY_CHAIR

Fondazione Santa Lucia, IRCCS

Marco Molinari, MD, PhD

Role: PRINCIPAL_INVESTIGATOR

Fondazione Santa Lucia, IRCCS

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Neurorehabilitation Units- Fondazione Santa Lucia, IRCCS

Rome, , Italy

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Italy

References

Explore related publications, articles, or registry entries linked to this study.

Kim AS, Cahill E, Cheng NT. Global Stroke Belt: Geographic Variation in Stroke Burden Worldwide. Stroke. 2015 Dec;46(12):3564-70. doi: 10.1161/STROKEAHA.115.008226. Epub 2015 Oct 20. No abstract available.

Reference Type RESULT
PMID: 26486867 (View on PubMed)

Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, Paolucci S, Inghilleri M, Astolfi L, Cincotti F, Mattia D. Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol. 2015 May;77(5):851-65. doi: 10.1002/ana.24390. Epub 2015 Mar 27.

Reference Type RESULT
PMID: 25712802 (View on PubMed)

Ramos-Murguialday A, Broetz D, Rea M, Laer L, Yilmaz O, Brasil FL, Liberati G, Curado MR, Garcia-Cossio E, Vyziotis A, Cho W, Agostini M, Soares E, Soekadar S, Caria A, Cohen LG, Birbaumer N. Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013 Jul;74(1):100-8. doi: 10.1002/ana.23879. Epub 2013 Aug 7.

Reference Type RESULT
PMID: 23494615 (View on PubMed)

Biasiucci A, Leeb R, Iturrate I, Perdikis S, Al-Khodairy A, Corbet T, Schnider A, Schmidlin T, Zhang H, Bassolino M, Viceic D, Vuadens P, Guggisberg AG, Millan JDR. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun. 2018 Jun 20;9(1):2421. doi: 10.1038/s41467-018-04673-z.

Reference Type RESULT
PMID: 29925890 (View on PubMed)

Cincotti F, Pichiorri F, Arico P, Aloise F, Leotta F, de Vico Fallani F, Millan Jdel R, Molinari M, Mattia D. EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4112-5. doi: 10.1109/EMBC.2012.6346871.

Reference Type RESULT
PMID: 23366832 (View on PubMed)

Morone G, Pisotta I, Pichiorri F, Kleih S, Paolucci S, Molinari M, Cincotti F, Kubler A, Mattia D. Proof of principle of a brain-computer interface approach to support poststroke arm rehabilitation in hospitalized patients: design, acceptability, and usability. Arch Phys Med Rehabil. 2015 Mar;96(3 Suppl):S71-8. doi: 10.1016/j.apmr.2014.05.026.

Reference Type RESULT
PMID: 25721550 (View on PubMed)

Cervera MA, Soekadar SR, Ushiba J, Millan JDR, Liu M, Birbaumer N, Garipelli G. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann Clin Transl Neurol. 2018 Mar 25;5(5):651-663. doi: 10.1002/acn3.544. eCollection 2018 May.

Reference Type RESULT
PMID: 29761128 (View on PubMed)

Coupar F, Pollock A, Rowe P, Weir C, Langhorne P. Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin Rehabil. 2012 Apr;26(4):291-313. doi: 10.1177/0269215511420305. Epub 2011 Oct 24.

Reference Type RESULT
PMID: 22023891 (View on PubMed)

Fleming MK, Sorinola IO, Roberts-Lewis SF, Wolfe CD, Wellwood I, Newham DJ. The effect of combined somatosensory stimulation and task-specific training on upper limb function in chronic stroke: a double-blind randomized controlled trial. Neurorehabil Neural Repair. 2015 Feb;29(2):143-52. doi: 10.1177/1545968314533613. Epub 2014 May 6.

Reference Type RESULT
PMID: 24803495 (View on PubMed)

Kantak SS, Stinear JW, Buch ER, Cohen LG. Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabil Neural Repair. 2012 Mar-Apr;26(3):282-92. doi: 10.1177/1545968311420845. Epub 2011 Sep 16.

Reference Type RESULT
PMID: 21926382 (View on PubMed)

Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain. 2007 Jan;130(Pt 1):170-80. doi: 10.1093/brain/awl333.

Reference Type RESULT
PMID: 17148468 (View on PubMed)

Cipriani M, Pichiorri F, Colamarino E, Toppi J, Tamburella F, Lorusso M, Bigioni A, Morone G, Tomaiuolo F, Santoro F, Cordella D, Molinari M, Cincotti F, Mattia D, Puopolo M. The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a statistical analysis plan for a randomized controlled trial. Trials. 2023 Nov 16;24(1):736. doi: 10.1186/s13063-023-07773-4.

Reference Type DERIVED
PMID: 37974284 (View on PubMed)

Mattia D, Pichiorri F, Colamarino E, Masciullo M, Morone G, Toppi J, Pisotta I, Tamburella F, Lorusso M, Paolucci S, Puopolo M, Cincotti F, Molinari M. The Promotoer, a brain-computer interface-assisted intervention to promote upper limb functional motor recovery after stroke: a study protocol for a randomized controlled trial to test early and long-term efficacy and to identify determinants of response. BMC Neurol. 2020 Jun 27;20(1):254. doi: 10.1186/s12883-020-01826-w.

Reference Type DERIVED
PMID: 32593293 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

RF-2018-12365210

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.