Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
61 participants
OBSERVATIONAL
2020-06-03
2021-06-04
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
TEG Anticoagulation Monitoring During ECMO
NCT02271126
Evaluating the Use of Thromboelastography (TEG) in Patient's Requiring Extracorporeal Membrane Oxygenation (ECMO)
NCT02887820
Ultrasound-facilitated, Catheter-directed, Thrombolysis in Intermediate-high Risk Pulmonary Embolism
NCT04790370
Optimum Duration of Acoustic Pulse Thrombolysis Procedure in Acute Pulmonary Embolism
NCT02396758
Interest in Evaluating Primary Hemostasis in Patients With Veno-venous Extracorporeal Membrane Oxygenation (ECMO)
NCT03248596
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Thromboelastography is a whole-blood point-of-care test that describes each phases of the clotting process from the activation of coagulation factors to the later lysis to the thrombus. TEG is also sensitive to UFH and can be used to quantify its effect. The use of heparinase during TEG also permits to evaluate the coagulation process during the use of heparin. This could give an important understanding of the effect of the ECMO itself on the circuit and help to develop a strategy to prevent bleeding and clotting as well as monitor heparin treatment.
The hypothesis for this study is that the use of thromboelastography will identify situations with high risk of bleeding and allow interventions to reduce hemorrhagic events and blood products transfusions. It is also hypothesized that the monitoring of unfractionated heparin (UFH) with TEG is feasible and could lead to the use of less UFH during the course of ECMO.
The objectives of this study are 1) to determine and calibrate the TEG R-time values corresponding to aPTT therapeutic range for patients under therapeutic UFH during ECMO course, 2) to determine the level of correlation of TEG parameters with other anticoagulation tests \[Prothrombin Time (PT), anti-Xa, activated clotting time (ACT)\], fibrinogen level, platelets count and d-dimers, 3) to determine the TEG values that are associated with the administration of blood-derived coagulation products in clinical practice 4) to identify TEG cutoff points that are associated with an increased risk of bleeding/clotting in ECMO patients 5) use these observational data to develop a TEG-based algorithm for anticoagulation management and blood products replacement that could be tested in a future study.
This study will you the last version of TEG, TEG-6s which is a fully automated point-of-care device.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Thromboelastography
Thromboelastography (TEG 6s, global hemostasis cartridge) will be performed before ECMO insertion and at different time-points during the course of ECMO. In parallel a full coagulation work-up (aPTT, prothrombin time \[PT\], anti-Xa, activated clotting time\[ACT\], platelets count, d-dimers, von Willebrand panel and fibrinogen) will be measured simultaneously with each TEG.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
The Physicians' Services Incorporated Foundation
OTHER
Damian Ratano
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Damian Ratano
Principal investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Damian Ratano, MD
Role: PRINCIPAL_INVESTIGATOR
University Health Network, Toronto
Eddy Fan, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
University Health Network, Toronto
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University Health Network
Toronto, Ontario, Canada
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Sauer CM, Yuh DD, Bonde P. Extracorporeal membrane oxygenation use has increased by 433% in adults in the United States from 2006 to 2011. ASAIO J. 2015 Jan-Feb;61(1):31-6. doi: 10.1097/MAT.0000000000000160.
Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004 Nov;25(26):5681-703. doi: 10.1016/j.biomaterials.2004.01.023.
Annich GM. Extracorporeal life support: the precarious balance of hemostasis. J Thromb Haemost. 2015 Jun;13 Suppl 1:S336-42. doi: 10.1111/jth.12963.
Zangrillo A, Landoni G, Biondi-Zoccai G, Greco M, Greco T, Frati G, Patroniti N, Antonelli M, Pesenti A, Pappalardo F. A meta-analysis of complications and mortality of extracorporeal membrane oxygenation. Crit Care Resusc. 2013 Sep;15(3):172-8.
Youngs RP, Gatland D, Brookes J. Swallowed radiolucent dental prostheses: risk of extraluminal oesophageal perforation. J Laryngol Otol. 1988 Jan;102(1):71-3. doi: 10.1017/s0022215100104037. No abstract available.
Shimizu M, Morito S, Kawamura Y. [Phlebography of several skin diseases likely to be associated with circulatory disorders of the lower extremity, varicose syndromes and Bazin's disease]. Acta Dermatol Kyoto Engl Ed. 1968 Aug;63(3):259-76. No abstract available. Japanese.
Ratano D, Alberio L, Delodder F, Faouzi M, Berger MM. Agreement between activated partial thromboplastin time and anti-Xa activity in critically ill patients receiving therapeutic unfractionated heparin. Thromb Res. 2019 Mar;175:53-58. doi: 10.1016/j.thromres.2019.01.002. Epub 2019 Jan 7.
Basu D, Gallus A, Hirsh J, Cade J. A prospective study of the value of monitoring heparin treatment with the activated partial thromboplastin time. N Engl J Med. 1972 Aug 17;287(7):324-7. doi: 10.1056/NEJM197208172870703. No abstract available.
Levine MN, Hirsh J, Gent M, Turpie AG, Cruickshank M, Weitz J, Anderson D, Johnson M. A randomized trial comparing activated thromboplastin time with heparin assay in patients with acute venous thromboembolism requiring large daily doses of heparin. Arch Intern Med. 1994 Jan 10;154(1):49-56.
Atallah S, Liebl M, Fitousis K, Bostan F, Masud F. Evaluation of the activated clotting time and activated partial thromboplastin time for the monitoring of heparin in adult extracorporeal membrane oxygenation patients. Perfusion. 2014 Sep;29(5):456-61. doi: 10.1177/0267659114524264. Epub 2014 Feb 25.
Panigada M, E Iapichino G, Brioni M, Panarello G, Protti A, Grasselli G, Occhipinti G, Novembrino C, Consonni D, Arcadipane A, Gattinoni L, Pesenti A. Thromboelastography-based anticoagulation management during extracorporeal membrane oxygenation: a safety and feasibility pilot study. Ann Intensive Care. 2018 Jan 16;8(1):7. doi: 10.1186/s13613-017-0352-8.
Henderson N, Sullivan JE, Myers J, Wells T, Calhoun A, Berkenbosch J, Tzanetos DT. Use of Thromboelastography to Predict Thrombotic Complications in Pediatric and Neonatal Extracorporeal Membranous Oxygenation. J Extra Corpor Technol. 2018 Sep;50(3):149-154.
Riley JB, Schears GJ, Nuttall GA, Oliver WC Jr, Ereth MH, Dearani JA. Coagulation Parameter Thresholds Associated with Non-Bleeding in the Eighth Hour of Adult Cardiac Surgical Post-Cardiotomy Extracorporeal Membrane Oxygenation. J Extra Corpor Technol. 2016 Jun;48(2):71-8.
Gurbel PA, Bliden KP, Tantry US, Monroe AL, Muresan AA, Brunner NE, Lopez-Espina CG, Delmenico PR, Cohen E, Raviv G, Haugen DL, Ereth MH. First report of the point-of-care TEG: A technical validation study of the TEG-6S system. Platelets. 2016 Nov;27(7):642-649. doi: 10.3109/09537104.2016.1153617. Epub 2016 Apr 11.
Delmas C, Jacquemin A, Vardon-Bounes F, Georges B, Guerrero F, Hernandez N, Marcheix B, Seguin T, Minville V, Conil JM, Silva S. Anticoagulation Monitoring Under ECMO Support: A Comparative Study Between the Activated Coagulation Time and the Anti-Xa Activity Assay. J Intensive Care Med. 2020 Jul;35(7):679-686. doi: 10.1177/0885066618776937. Epub 2018 May 16.
Related Links
Access external resources that provide additional context or updates about the study.
Extracorporeal life support organisation (ELSO) anticoagulation guidelines
TEG 6s description
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
19-5121
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.