HoloLens: an Objective Alternative to the Operator's Memory

NCT ID: NCT04028284

Last Updated: 2025-01-03

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

84 participants

Study Classification

INTERVENTIONAL

Study Start Date

2019-01-18

Study Completion Date

2021-02-19

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Neuraxial anesthesia has traditionally been a 'blind' technique relying on users' feel and skill, both are subjective, lack complete accuracy and influenced by patient's physique variations that are quite challenging, and lead to patient morbidity, infection, and nerve injury. The ultrasound(US) use allows real-time views of needle position thereby achieving higher success rates, fewer complications, and reduced patient discomfort. While US guidance for neuraxial procedures is popular, it is still relatively uncommon due to technical and anatomical challenges. The study investigators have created an innovative methodology to use with HoloLens, an augmented reality tool, to provide an accurate live road map for the needle path hidden under the patient's skin. This see-through model is an objective alternative to the user's memory for direct visualization of the needle virtual trajectory as it passed through the tissue and towards the 3D printed bone. Also, this model may have a variety uses in anesthesia.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

US guidance for epidural anesthesia is yet challenging due to anatomical and technical restrictions which are rely on the operator's memory to imitate accurate needle trajectory. To address the problem, the study investigators designed and developed the first model of a live anatomical holographic marking system using Microsoft HoloLens, an augmented reality technology tool, to provide a superimposed US image as an objective alternative to the operator's memory. In this study, the proposed methodology will be used to accurate and ease directing the needle insertion thereby leading to the success of the epidural placement and decrease in procedure time. Based on previously published and data from the SHSC institution, mean thoracic epidural analgesia placement required 10 minutes with a standard deviation of 3 minutes. A reduction in procedure time will reduce patient discomfort, increase block and operating rooms efficiency thereby reducing hospital costs as well as used for anatomically challenging patients.

The investigators hypothesize that using augmented reality through HoloLens will lead to implementation of a newly developed virtual holographic 'see-through' tool for neuraxial anesthetic techniques that will increase needle accuracy and decrease procedure time.

The main question of the study is to assess the accuracy of the developed application. In particular, the study will determine if a holographic marking of the site of needle insertion and optimal angulation will increase needle accuracy and reduce procedure time by increasing first past success when compared to traditional ultrasound land-mark based techniques.

The methodology proposed in this study is truly innovative in medical content, involves a partnership with software and engineering experts. The study will lead to implementation of a new objective tool, validation of which will create an accessible, cost-effective piece of technology that will reduce patient morbidity and increase procedure success rate. This 'state-of-the-art' technology can be used for alternate procedures such as peripheral nerve block in patients that cannot be easily positioned for live US techniques. Also, this study will generate a knowledge-based approach that can be used as a teaching and clinical tool locally at institutions presented with anatomically difficult population (e.g. trauma, obstetric patients) at Sunnybrook Health Sciences Centre and around the world, where resources are at a minimum.

This is a prospective cohort randomized trial. With institutional ethical approval and having obtained both, written informed consent and verbal assent from participants, 84 thoracic epidural events will be assessed. A thoracic spine US 3D Phantom model utilizing open source BodyParts3D library anatomy files constructed by group of software and engineering experts, and accessible for practice to anesthetists. Our 3D Phantom model has similar palpation characteristics to a patient mimicking a standard loss of resistance to saline that occurs on entrance of a needle to the spinal canal cavity. The holographic mapping methodology will be practiced by anesthetists on the Phantom model until they feel comfortable with the system prior the study start. Participants will be recruited from the pre-anesthesia clinic. Only participants who meet inclusion criteria will be approached for participation in this study (Table 1,inclusion/exclusion criteria, study protocol). The anesthetists will be randomized to: Group1, landmark based thoracic epidural technique(control) or, Group 2, HoloLens-assisted thoracic epidural technique(intervention), where the needle will be inserted using instantly created holographic trajectory. SHS centre has a dedicated regional block room and four regional expert anesthetists in the US-guided thoracic epidural technique and are comfortable with the HoloLens. Prior to the study start, anesthetists will practice needle insertion on the phantom model by attempting needle insertion 20Xeach, or until they felt comfortable with the tool, while wearing HoloLens. Other aspects of patient care will follow the standard of care at the centre. Data will be collected by anesthetists and include patients surgical/abdominal pain assessment during epidural procedure and post-operatively, and questionnaire about their experience using the HoloLens.

Data will be validated to enable optimization and further implementation of novel technology.

1. Inclusion Criteria/Anesthetists:

* Trained in US-guided epidural technique with fellowship
* Performed \>100 thoracic US-guided epidural procedures
2. Exclusion Criteria/Patients:

* age \>18
* Lack of verbal patient assent after study introduction

The control group will be required to determine if hologram mapping and methodology indeed provide an accuracy of the holographic trajectory and create a live road map for the needle path hidden under the patient's skin. Study participants will be withdrawn from the study at their request at any time.

To address this study specific objectives of whether the HoloLens application, that is designed to allow a holographic marking of the needle insertion site and optimal angulation would 1) decrease procedure time by increasing first past success when used as a guide to the thoracic epidural space; and 2) increase needle accuracy when compared to traditional ultrasound landmark based techniques, an observer (i.e. anesthesiologist) will document following:

1. the time to procedure completion starting from skin puncture to time at which the Tuohy needle is withdrawn;
2. the number of a needle movements (in any direction/re-direction)
3. number of skin punctures made;
4. patients' pain score during the procedure and post-operatively using the numeric rating scale (NRS);
5. any complications during the procedure such as paresthesias, dural punctures;
6. the need for patient controlled analgesia (PCA) in PACU (constituting failure of epidural).

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Virtual Reality Anesthesia Epidural

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

SINGLE_GROUP

Primary Study Purpose

DEVICE_FEASIBILITY

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Group 1

In Group 1 (control), the staff anesthesiologist will follow the traditional technique for US-guided thoracic epidural insertion. Briefly, the anesthesiologist will use the US to identify and mark the appropriate spot for placement of the thoracic epidural catheter. The US probe is then placed at rest and the anesthesiologist will proceed with thoracic epidural needle insertion following standard techniques.

Group Type ACTIVE_COMPARATOR

US-guided epidural

Intervention Type OTHER

traditional thoracic epidural procedure

Group 2

In Group 2 (intervention), the staff anesthesiologist will use the HoloLens tool to assist with the traditional technique as described above for Group 1. In combination with the US, a hologram image of the trajectory towards the epidural space will be generated, thereby mitigating the need to walk off the lamina. The holographic system will mark the appropriate spot for placement of the thoracic epidural catheter. Then, the needle will be inserted following the holographic trajectory overlaid on the patient's back.

Group Type ACTIVE_COMPARATOR

HoloLens-guided epidural

Intervention Type DEVICE

To determine whether using the HoloLens tool increases the success of epidural insertion.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

HoloLens-guided epidural

To determine whether using the HoloLens tool increases the success of epidural insertion.

Intervention Type DEVICE

US-guided epidural

traditional thoracic epidural procedure

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Trained in US-guided epidural technique with fellowship
* Performed \>100 thoracic US-guided epidural procedures

Exclusion Criteria

* Age \<18
* Lack of verbal patient assent after study introduction
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Sunnybrook Health Sciences Centre

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Dr. Fahad Alam

Principal Investigator

Responsibility Role PRINCIPAL_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Sunnybrook Health Sciences Centre

Toronto, , Canada

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Canada

References

Explore related publications, articles, or registry entries linked to this study.

Wiegelmann J, Choi S, McHardy PG, Matava C, Singer O, Kaustov L, Alam F. Randomized control trial of a holographic needle guidance technique for thoracic epidural placement. Reg Anesth Pain Med. 2024 Dec 2;49(12):861-866. doi: 10.1136/rapm-2023-104703.

Reference Type DERIVED
PMID: 38212048 (View on PubMed)

Tanwani J, Alam F, Matava C, Choi S, McHardy P, Singer O, Cheong G, Wiegelmann J. Development of a Head-Mounted Holographic Needle Guidance System for Enhanced Ultrasound-Guided Neuraxial Anesthesia: System Development and Observational Evaluation. JMIR Form Res. 2022 Jun 23;6(6):e36931. doi: 10.2196/36931.

Reference Type DERIVED
PMID: 35737430 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

Hololens

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.