Functional Assessment of Myocardial Ischemia by Intracoronary Electrocardiogram

NCT ID: NCT03985241

Last Updated: 2019-12-19

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

100 participants

Study Classification

INTERVENTIONAL

Study Start Date

2016-12-03

Study Completion Date

2019-12-13

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

In patients with chronic stable coronary artery disease (CAD), percutaneous coronary intervention (PCI) targets hemodynamically significant coronary lesions, i.e., those thought to cause inducible ischemia. The hemodynamic severity of a coronary stenosis increases with its tightness and with the myocardial mass of viable myocardium downstream of the stenosis.

Compared to the traditional anatomic angiographic approach, assessment of functional relevance by fractional flow reserve (FFR) during coronary angiography has been suggested to improve patient outcomes. Fractional flow reserve (FFR) is based on determination of the coronary perfusion pressure downstream of a stenosis during pharmacologic hyperemia. However, FFR relies on oversimplified physiologic concepts, which limits its usefulness in defining a true ischemic threshold. Furthermore, visual angiographic assessment continues to dominate the treatment decisions for intermediate coronary lesions.

Conversely, the intracoronary ECG (icECG) provides an inexpensive, sensitive and direct measure of myocardial ischemia. The icECG is easily acquired by attaching a reusable alligator clamp to a conventional angioplasty guidewire (at one tenth the price of a pressure sensor guidewire). The coronary guide wire positioned downstream of a coronary stenosis then acts as the exploring electrode. During pharmacologic stress, the icECG can provide direct evidence for regional myocardial ischemia to define the ischemic threshold in different types of coronary artery disease.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

INVASIVE PRESSURE-DERIVED INDICES OF STENOSIS SEVERITY

In the setting of stable coronary artery disease (CAD), PCI or coronary artery bypass grafting (CABG) targets coronary lesions causing inducible myocardial ischemia. With the advancement of technology, the development of a coronary pressure guide wire enabled to reliably measure coronary perfusion pressure downstream of a stenosis and therefore trans-stenotic pressure gradients. On the basis of comparisons to noninvasive stress tests, the concept of fractional flow reserve (FFR) was introduced. FFR determines the ratio of mean distal coronary pressure and mean aortic pressure (the effective coronary perfusion pressure) during (pharmacologic) hyperemia. A FFR value of near 1 is then equivalent to a totally normal coronary artery, whereas a cutoff of 0.75-0.80 is commonly used to determine that PCI is warranted.

With FFR, pharmacologic hyperemia is mandatory to induce minimal and constant myocardial resistance, which is the basis to directly relate coronary pressure and flow.In contrast, the recently introduced concept of the instantaneous wave-free ratio (iFR) claims to obviate the need for administration of pharmacologic stress. Instead, coronary pressure is analyzed at rest and during part of coronary diastole, when myocardial resistance is thought to be naturally constant and minimal (the so called wave-free period).

LIMITATIONS OF PRESSURE-DERIVED INDICES OF STENOSIS SEVERITY IN DEFINING THE ISCHEMIC THRESHOLD

A major limitation of pressure-derived indices of stenosis severity is related to the assumption of oversimplified physiologic concepts. Clinically, the diagnostic accuracy of FFR is restricted in three scenarios. Firstly, the pressure gradient evaluated by FFR is critically dependent on the magnitude of resistance offered by the microcirculation. With microvascular dysfunction, microvascular resistance remains inadequately high during pharmacologic hyperemia, meaning that the pressure gradient across the stenosis does not reflect the epicardial stenosis severity (overestimation of FFR).

Secondly, with a focal stenosis, but well-preserved microvascular function and minimal diffuse atherosclerosis, hyperemic coronary flow (although reduced) may still be above the ischemic threshold, although the pressure gradient suggests otherwise. Thirdly, with severe diffuse coronary atherosclerosis, coronary flow may be reduced below the ischemic threshold, but with only an insignificant fall in the hyperemic pressure gradient (FFR). In summary, although FFR claims otherwise, the ischemic threshold set by FFR is unreliable in a significant proportion of pathophysiological and clinical scenarios.

DIRECT ASSESSMENT OF REVERSIBLE MYOCARDIAL ISCHEMIA BY INTRACORONARY ELECTROCARDIOGRAM

The electrocardiogram (ECG) is an indispensable tool in the diagnosis of myocardial ischemia. The commonly used surface ECG is however limited especially in detecting short-lasting, or minor myocardial ischemia. Furthermore, ischemia in the territory of the left circumflex coronary artery is often undetected. Conversely, due to its close vicinity to the myocardium, the intracoronary ECG (icECG) is much more sensitive in detecting acute myocardial ischemia. The icECG is obtained by attaching a reusable alligator clamp to a coronary guidewire. With the guidewire positioned in a coronary artery, the derived (pseudo)unipolar icECG reflects local epicardial ECG.

The value of the icECG was first shown by Friedman et al. Unipolar icECG was recorded during balloon dilatation of coronary stenosis from the guidewire positioned across the stenosis to be dilated. Ischemic changes in icECG was observed in 72% of stenoses dilated. In the cases with no ischemic changes, either a prior myocardial infarction in the territory undergoing balloon dilatation or angiographic collaterals were present, consistent with the notion that ischemia was not inducible in nonviable myocardium or prevented by sufficient collaterals. Of note, ST changes in the surface ECG were seen in only 31% of cases.

With acute and complete coronary occlusion, perfusion to the dependent territory is usually severely reduced which explains the frequent occurrence of icECG changes. However, the usefulness of the icECG has also been shown with partial coronary occlusion. Experimentally, Battler et al. demonstrated that during a partial stenosis producing only mild regional dysfunction, significant ST segment changes in regional epicardial ECG could be observed after 2-3 minutes. Clinically, Hishikari et al. showed in patients with non-ST-segment elevation myocardial infarction (NSTEMI) that ST-segment-elevation in the icECG (icECG-STE) was observed in 27.6% of patients before PCI and was more common with LCX culprit lesions. Furthermore, in multivariate analysis, icECG-STE predicted greater peak values of troponin levels, consistent with greater myocardial injury. Similarly, but in patients undergoing elective PCI, Uetani et al. showed that icECG provided a useful method to predict post-procedural myocardial injury.

With regard to detection of inducible ischemia by pharmacologic (vasodilator) stress, Balian et al. compared STsegment shift in the icECG (IST) during intravenous adenosine infusion with FFR in 48 patients. 81% of patients with an FFR ≤0.80 showed IST during adenosine infusion, while 14% had IST with an FFR \>0.80. As a major limitation, the study compared icECG findings only with FFR and therefore, the mechanism of discordant results remained unclear. Furthermore, the choice of the pharmacologic stressor was questionable: the perfusion abnormalities induced by adenosine are the result of flow heterogeneity, in contrast to exercise (or inotropic pharmacologic stress, eg. dobutamine), where the perfusion abnormalities are the result of myocardial ischemia (detectable by the electrocardiogram).

Thus, the goal of this study is to test the accuracy of intracoronary (ic) ECG during pharmacologic inotropic stress (i.e. Imitation of daily physical activity) to determine significant coronary lesions in comparison with established physiologic indices (fractional flow reserve (FFR), instantaneous wave-free ratio (iFR)) as well as with quantitatively determined percent diameter stenosis (%S) using biplane coronary angiography.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Coronary Artery Disease Stable Angina Coronary Artery Stenosis Ischemia

Keywords

Explore important study keywords that can help with search, categorization, and topic discovery.

Intracoronary Electrocardiogram Fractional Flow Reserve Collateral Flow Index Dobutamine

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

DIAGNOSTIC

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Functional Assessment of Myocardial Ischemia by icECG

Evaluation of ST-Shifts in the icECG acquired downstream of a coronary lesion during pharmacologic inotropic stress using dobutamine (40mcg/kg/min).

Group Type EXPERIMENTAL

Functional Assessment of Myocardial Ischemia by icECG

Intervention Type DIAGNOSTIC_TEST

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Functional Assessment of Myocardial Ischemia by icECG

Intervention Type DIAGNOSTIC_TEST

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Age \> 18 years
* Referred for elective coronary angiography
* Written informed consent to participate in the study

Exclusion Criteria

* Acute coronary syndrome
* Severe aortic stenosis
* Acute congestive heart failure NYHA III-IV
* Prior myocardial infarction in the vascular territory undergoing pressure measurements
* Presence of left bundle branch block, non-sinus rhythm or paced rhythm in resting ECG
* Coronary anatomy unsuitable for coronary pressure measurements
* Severe pulmonary, renal or hepatic disease
* Contraindication to inotropic stress
* Women of childbearing age
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Insel Gruppe AG, University Hospital Bern

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Christian Seiler, MD, Prof

Role: PRINCIPAL_INVESTIGATOR

Inselspital, Bern University Hospital

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University Hospital Inselspital, Bern

Bern, , Switzerland

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Switzerland

Related Links

Access external resources that provide additional context or updates about the study.

https://www.ncbi.nlm.nih.gov/pubmed/2942314

Friedman et al. Circulation 1986 - Value of the intracoronary electrocardiogram to monitor myocardial ischemia during percutaneous transluminal coronary angioplasty.

https://www.ncbi.nlm.nih.gov/pubmed/22835408

de Marchi et al. JACC 2012 - Determinants of prognostically relevant intracoronary electrocardiogram ST-segment shift during coronary balloon occlusion.

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

2016-00726

Identifier Type: -

Identifier Source: org_study_id