Evaluation of the FOCUS Diffusion's Added Clinical Value Compared to Conventional MRI
NCT ID: NCT03961646
Last Updated: 2023-04-28
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
74 participants
OBSERVATIONAL
2019-02-01
2020-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
While the scanner, with its high spatial resolution, plays a major role in pancreatic pathology, and in particular in the assessment of operability, MRI, with its good contrast resolution, has proven its contribution to the detection and characterization of focal lesions.
Each MRI examination consists of several series of images called sequences, each with its own particularity, to highlight different types of abnormalities such as edema, bleeding, tumor content or vascularization. All the sequences performed constitute a "protocol". The diffusion sequence is a technology that allows the microscopic random movements of water molecules to be translated into images. It thus makes it possible to differentiate between certain aggressive tumours which are characterised by a higher cell density than healthy tissue, in which water molecules do not circulate freely, benign lesions such as cysts in which the circulation of water molecules is not hindered. The calculation of the Apparent Diffusion Coefficient (ADC), an estimate of the diffusion rate of water molecules, is a quantitative diagnostic tool validated in many fields of application and in particular in oncology.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Contribution of New Pancreatic MRI Sequences for the Evaluation of Tumor Response in Pancreatic Adenocarcinomas
NCT06842303
The Prediction Using Diffusion MRI of the Response Evaluation in BRPC in NAT.
NCT02777463
Establishment of Radiomics Database by Clinical Application of Multiparametric MRI Based on Incoherent Undersampling
NCT02944006
Magnetic Resonance Imaging (MRI) to Predict Outcomes of Pancreatic Ductal Adenocarcinoma (PDAC)
NCT04700488
Diagnostic Value of DWI-MRI for Detection of Peritoneal Metastases in High-risk Pancreatic Ductal Adenocarcinoma.
NCT05340569
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
This wide-field sequence suffers from several limitations: difficulty in differentiating adenocarcinomas from chronic pseudo-mass pancreatitis due to the overlap of CDA values and difficulty in defining the boundaries of cephalic or corporal adenocarcinomas due to the hypersignal of upstream chronic obstructive pancreatitis (9)(10). Technically, it is subject to movement artifacts related to respiration, adjacent organs and in particular the duodenum, and to an average spatial resolution of the pancreas.
Over the last 10 years, a diffusion sequence called "FOCUS" has been developed allowing a reduction of the field of view in the direction of phase coding and therefore a "zoomed" image with higher resolution. This sequence has shown interest in neuroradiology and prostate cancer detection in reducing artifacts and achieving better spatial resolution than the usual "wide field" diffusion sequence. 3 minutes and 30 seconds more are required to complete this sequence.
The pancreas is a good candidate for FOCUS diffusion imaging because of its small size, susceptibility to movement artifacts and spatial orientation, allowing antero-posterior reduction of the field of view. Initial work has established the feasibility of this FOCUS diffusion in pancreatic imaging and shown an improvement in image quality (more accurate and less artefacts) in FOCUS diffusion compared to the usual "wide field".
Due to its potential in pancreatic imaging, the FOCUS diffusion sequence has been performed in current practice since 2014 in the imaging department of the Groupe Hospitalier Paris Saint-Joseph (GHPSJ) in addition to the "wide field" diffusion sequence. The protocol thus created is called "combined protocol" as opposed to "standard protocol" which does not contain the FOCUS broadcast sequence.
Kim H et al showed an improvement in the subjective clinical utility of readers in the diagnosis of benign or malignant pancreatic lesions. However, it should be noted that in this study the authors compared the two sequences by opposing them rather than comparing the usual wide-field sequence with the combination of the two sequences.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
RETROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Francophone patient
* Pancreatic MRI performed at the GHPSJ on 3 Tesla MRI between September 2014 (date of introduction of the FOCUS diffusion sequence) and April 2018
* Presence of at least one proven benign or malignant focal pancreatic lesion visible on at least one of the MRI sequences
Exclusion Criteria
* Patient deprived of liberty
* Patient objecting to the use of their data for this research
* Papillary and mucinous intra-channel tumour of pancreas (TIPMP) of secondary channels measuring less than 30mm.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Fondation Hôpital Saint-Joseph
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Marc ZINS, MD
Role: PRINCIPAL_INVESTIGATOR
Fondation Hôpital Saint-Joseph
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Groupe Hospitalier Paris Saint-Joseph
Paris, , France
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Schima W. MRI of the pancreas: tumours and tumour-simulating processes. Cancer Imaging. 2006 Dec 20;6(1):199-203. doi: 10.1102/1470-7330.2006.0035.
Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007 Jun;188(6):1622-35. doi: 10.2214/AJR.06.1403.
Barral M, Taouli B, Guiu B, Koh DM, Luciani A, Manfredi R, Vilgrain V, Hoeffel C, Kanematsu M, Soyer P. Diffusion-weighted MR imaging of the pancreas: current status and recommendations. Radiology. 2015 Jan;274(1):45-63. doi: 10.1148/radiol.14130778.
Park MJ, Kim YK, Choi SY, Rhim H, Lee WJ, Choi D. Preoperative detection of small pancreatic carcinoma: value of adding diffusion-weighted imaging to conventional MR imaging for improving confidence level. Radiology. 2014 Nov;273(2):433-43. doi: 10.1148/radiol.14132563. Epub 2014 Jul 4.
d'Assignies G, Fina P, Bruno O, Vullierme MP, Tubach F, Paradis V, Sauvanet A, Ruszniewski P, Vilgrain V. High sensitivity of diffusion-weighted MR imaging for the detection of liver metastases from neuroendocrine tumors: comparison with T2-weighted and dynamic gadolinium-enhanced MR imaging. Radiology. 2013 Aug;268(2):390-9. doi: 10.1148/radiol.13121628. Epub 2013 Mar 26.
Motosugi U, Ichikawa T, Morisaka H, Sou H, Muhi A, Kimura K, Sano K, Araki T. Detection of pancreatic carcinoma and liver metastases with gadoxetic acid-enhanced MR imaging: comparison with contrast-enhanced multi-detector row CT. Radiology. 2011 Aug;260(2):446-53. doi: 10.1148/radiol.11103548. Epub 2011 Jun 21.
Kim HW, Lee JC, Paik KH, Kang J, Kim YH, Yoon YS, Han HS, Kim J, Hwang JH. Adjunctive role of preoperative liver magnetic resonance imaging for potentially resectable pancreatic cancer. Surgery. 2017 Jun;161(6):1579-1587. doi: 10.1016/j.surg.2016.12.038. Epub 2017 Feb 23.
Zins M, Matos C, Cassinotto C. Pancreatic Adenocarcinoma Staging in the Era of Preoperative Chemotherapy and Radiation Therapy. Radiology. 2018 May;287(2):374-390. doi: 10.1148/radiol.2018171670.
Klauss M, Lemke A, Grunberg K, Simon D, Re TJ, Wente MN, Laun FB, Kauczor HU, Delorme S, Grenacher L, Stieltjes B. Intravoxel incoherent motion MRI for the differentiation between mass forming chronic pancreatitis and pancreatic carcinoma. Invest Radiol. 2011 Jan;46(1):57-63. doi: 10.1097/RLI.0b013e3181fb3bf2.
Wiggermann P, Grutzmann R, Weissenbock A, Kamusella P, Dittert DD, Stroszczynski C. Apparent diffusion coefficient measurements of the pancreas, pancreas carcinoma, and mass-forming focal pancreatitis. Acta Radiol. 2012 Mar 1;53(2):135-9. doi: 10.1258/ar.2011.100252. Epub 2012 Jan 19.
Bittencourt LK, Matos C, Coutinho AC Jr. Diffusion-weighted magnetic resonance imaging in the upper abdomen: technical issues and clinical applications. Magn Reson Imaging Clin N Am. 2011 Feb;19(1):111-31. doi: 10.1016/j.mric.2010.09.002.
Saritas EU, Cunningham CH, Lee JH, Han ET, Nishimura DG. DWI of the spinal cord with reduced FOV single-shot EPI. Magn Reson Med. 2008 Aug;60(2):468-73. doi: 10.1002/mrm.21640.
Andre JB, Zaharchuk G, Saritas E, Komakula S, Shankaranarayan A, Banerjee S, Rosenberg J, Nishimura DG, Fischbein NJ. Clinical evaluation of reduced field-of-view diffusion-weighted imaging of the cervical and thoracic spine and spinal cord. AJNR Am J Neuroradiol. 2012 Nov;33(10):1860-6. doi: 10.3174/ajnr.A3134. Epub 2012 May 3.
Reischauer C, Wilm BJ, Froehlich JM, Gutzeit A, Prikler L, Gablinger R, Boesiger P, Wentz KU. High-resolution diffusion tensor imaging of prostate cancer using a reduced FOV technique. Eur J Radiol. 2011 Nov;80(2):e34-41. doi: 10.1016/j.ejrad.2010.06.038. Epub 2010 Jul 16.
Ma C, Li YJ, Pan CS, Wang H, Wang J, Chen SY, Lu JP. High resolution diffusion weighted magnetic resonance imaging of the pancreas using reduced field of view single-shot echo-planar imaging at 3 T. Magn Reson Imaging. 2014 Feb;32(2):125-31. doi: 10.1016/j.mri.2013.10.005. Epub 2013 Oct 18.
Riffel P, Michaely HJ, Morelli JN, Pfeuffer J, Attenberger UI, Schoenberg SO, Haneder S. Zoomed EPI-DWI of the pancreas using two-dimensional spatially-selective radiofrequency excitation pulses. PLoS One. 2014 Mar 3;9(3):e89468. doi: 10.1371/journal.pone.0089468. eCollection 2014.
Kim H, Lee JM, Yoon JH, Jang JY, Kim SW, Ryu JK, Kannengiesser S, Han JK, Choi BI. Reduced Field-of-View Diffusion-Weighted Magnetic Resonance Imaging of the Pancreas: Comparison with Conventional Single-Shot Echo-Planar Imaging. Korean J Radiol. 2015 Nov-Dec;16(6):1216-25. doi: 10.3348/kjr.2015.16.6.1216. Epub 2015 Oct 26.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Diffusion Focus
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.