The Role of Hyperbaric Oxygen and Neuropsychological Therapy in Cognitive Function Following Traumatic Brain Injury
NCT ID: NCT03900182
Last Updated: 2021-08-02
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
TERMINATED
NA
10 participants
INTERVENTIONAL
2019-04-09
2021-02-28
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Many studies have shown that oxidative stress and inflammatory responses play an important role in the pathogenesis of the central nervous system. In recent years, our research team has shown that oxidative stress and inflammatory response are significantly associated with the prognosis of patients with traumatic brain injury, cerebral hemorrhage, and stroke patients. More and more evidences also show that oxidative stress and inflammatory response play an important role in the neuropathological changes of mental cognitive sequelae after traumatic brain injury. This injury may be gradual from the time of head trauma. This process begins with the generation of oxidative stress and free radicals. When the cell repair and free radical scavenging system can not effectively overcome the excessive production of free radicals, an oxidative damage reaction will occur, causing a series of inflammatory cells and cytokines to be activated. Studies have also shown that when inhibiting those free radicals that produce oxidative stress, the neurological function and cognitive function of the head after trauma can be significantly improved.
It is becoming widely acknowledged that the combined action of hyperoxia and hyperbaric pressure leads to significant improvement in tissue oxygenation while targeting both oxygenand pressure-sensitive genes, resulting in improved mitochondrial metabolism with anti-apoptotic and anti-inflammatory effects. The investigators published an article this year showing that hyperbaric oxygen therapy can improve the prognosis of patients with acute stroke and increase endothelial progenitor cells in the systemic circulation.
The investigators plan to conduct this research project through hyperbaric oxygen therapy and neuropsychological therapy, and using scientific tests and neurocognitive function assessments. The investigators hope to answer the following questions: (1) Whether the treatment of hyperbaric oxygen can improve oxidative stress and inflammatory response after brain injury, and observe changes in biomarker concentration; (2) Whether hyperbaric oxygen therapy and neuropsychological therapy can improve cognitive function after brain injury; and (3) which biomarkers are factors that influence cognitive function prognosis.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Treatment of Traumatic Brain Injury With Hyperbaric Oxygen Therapy
NCT00810615
Impact of Early Optimization of Brain Oxygenation on Neurological Outcome After Severe Traumatic Brain Injury
NCT02754063
Hyperbaric Oxygen Treatment for Veterans With Traumatic Brain Injury
NCT06581003
Hyperbaric Oxygen Therapy Improves Brain Function in Patients With Cognitive Decline After COVID-19 Infection.
NCT05715801
Hyperbaric Oxygen Therapy for Cognition in Diabetic Elderly at High Dementia Risk
NCT03036254
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Diagnostic criteria of mild and moderate traumatic brain injury. Diagnostic criteria of traumatic brain injury will be according to (1) American Association of Neurosurgical Surgeons (AANS) Guidelines for The Management of Severe Head Injury; (2) YOUMANS Neurological Surgery Fifth Edition Guidelines for Traumatic Brain Injury.
Definitions and classifications Traumatic brain injury is defined as damage to the brain resulting from external mechanical force, such as rapid acceleration or deceleration, impact, blast waves, or penetration by a projectile. Consequently to the injury, brain function is temporarily or permanently impaired and structural damage may or may not be detectable with current imaging technology. TBI is usually classified based on severity, anatomical features of the injury, and the cause of the injury. The severity is assessed according to the loss of consciousness (LOC) duration, the post-traumatic amnesia (PTA), and the Glasgow coma scale (GCS) grading of the level of consciousness. Approximately (70-90%) of the TBI in the US are classified as mild TBI (mTBI) or concussion - LOC duration of 0-30 minutes, PTA duration of less than a day and GCS grade of 13-15. Post concussion syndrome (PCS) is a set of symptoms succeeding mTBI in most patients. The PCS symptoms include headache, dizziness, neuropsychiatric symptoms, and cognitive impairments. In most patients, PCS may continue for weeks or months, and up to 25% of the patients may experience prolonged PCS (PPCS) in which the symptoms last for over six months. Such individuals are at high risk for emotional and cognitive dysfunction, culminating in inability to carry out ordinary daily activities, work responsibilities and standard social relationships.
Hypotheses and Purpose:
In this study, the investigators hypothesize that the hyperbaric oxygen therapy in neurotherapeutics, in light of recent persuasive evidence for hyperbaric oxygen therapy efficacy in brain repair and of new understanding of brain energy management and response to damage. The investigators discuss the optimal timing of treatment, optimal dose-response curve (oxygenpressure levels), suitable candidates and promising future directions. The investigators speculate that these changes of biomarkers correlated with the hyperbaric oxygen therapy efficacy and the progression of neuropsychological testing during the 18 weeks follow-up.
The investigators plan to conduct this research project through hyperbaric oxygen therapy and neuropsychological therapy and using scientific tests and neurocognitive function assessments. The scientific tests including flow cytometry to evaluate the fraction of circulating activated platelets, the proportion of leukocytosis apoptosis, Erythrocyte assay of antioxidant enzymes and Enzyme-Linked Immunosorbent Assay (ELISA) for inflammatory markers.
Purpose:
1. To evaluate that whether the treatment of hyperbaric oxygen can improve oxidative stress and inflammatory response after brain injury, and observe changes in biomarker concentration.
2. To evaluate that whether hyperbaric oxygen therapy and neuropsychological therapy can improve cognitive function after brain injury.
3. To evaluate that which biomarkers are factors that influence the prognosis of cognitive function.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
Patients in the treated group were evaluated three - at baseline, after 6 weeks of HBOT and after 6 weeks of neuropsychological treatment or no treatment. Patients in the crossover group were evaluated three times: baseline, after 6 weeks control period of no treatment, and after subsequent 6 weeks of HBOT. The post-HBOT neuropsycological evaluations were performed more than 1 week (1-2 weeks) after the end of the HBOT protocol. The following HBOT protocol was practiced: 30 daily sessions, 5 days/week, 60 minutes each, 100% oxygen at 1.5ATA.
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
HBO treated group
Patients in the treated group were evaluated three - at baseline, after 6 weeks of HBOT and after 6 weeks of neuropsychological treatment or no treatment.
Hyperbaric Oxygen Therapy
The Hyperbaric Oxygen Therapy (HBOT) patients were placed in a chamber that was pressurized with air to 2.5 ATA during 15 min and were supplied 100% oxygen for 25 mins, followed by a 5-min air break. This cycle was repeated once and followed by 100% oxygen for 10 min, after which time the chamber was depressurized to 1 ATA over 15 min with 100% oxygen for a total treatment time of 100 min.
crossover group
Patients in the crossover group were evaluated three times: baseline, after 6 weeks control period of no treatment, and after subsequent 6 weeks of HBOT
Hyperbaric Oxygen Therapy
The Hyperbaric Oxygen Therapy (HBOT) patients were placed in a chamber that was pressurized with air to 2.5 ATA during 15 min and were supplied 100% oxygen for 25 mins, followed by a 5-min air break. This cycle was repeated once and followed by 100% oxygen for 10 min, after which time the chamber was depressurized to 1 ATA over 15 min with 100% oxygen for a total treatment time of 100 min.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Hyperbaric Oxygen Therapy
The Hyperbaric Oxygen Therapy (HBOT) patients were placed in a chamber that was pressurized with air to 2.5 ATA during 15 min and were supplied 100% oxygen for 25 mins, followed by a 5-min air break. This cycle was repeated once and followed by 100% oxygen for 10 min, after which time the chamber was depressurized to 1 ATA over 15 min with 100% oxygen for a total treatment time of 100 min.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age between 18 and 65 years old
Exclusion Criteria
2. Combined with other major trauma which had unstable hemodynamics
3. Major systemic disease, such ESRD, liver cirrhosis, CHF, or a malignant disease
4. Evidence for alcoholism or any other addictive disorders, or known affective or other psychiatric disease or use of sedatives or neuroleptic medication
5. Known neurological disorders potentially affecting the central nervous system or severe recent life events that might have interfered with neuropsychological testing.
18 Years
65 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Hung-Chen Wang
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Hung-Chen Wang
Attending physician; Associate professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Tsang-Tang Hsieh, MD
Role: STUDY_CHAIR
Chang Gung Medical Foundation
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Kaohsiung Chang Gung Memorial Hospital
Kaohsiung City, , Taiwan
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008 Aug;7(8):728-41. doi: 10.1016/S1474-4422(08)70164-9.
Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, McIntosh TK. The duality of the inflammatory response to traumatic brain injury. Mol Neurobiol. 2001 Aug-Dec;24(1-3):169-81. doi: 10.1385/MN:24:1-3:169.
Zhang X, Chen Y, Jenkins LW, Kochanek PM, Clark RS. Bench-to-bedside review: Apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care. 2005 Feb;9(1):66-75. doi: 10.1186/cc2950. Epub 2004 Sep 3.
Schmidt OI, Leinhase I, Hasenboehler E, Morgan SJ, Stahel PF. [The relevance of the inflammatory response in the injured brain]. Orthopade. 2007 Mar;36(3):248, 250-8. doi: 10.1007/s00132-007-1061-z. German.
Lu J, Goh SJ, Tng PY, Deng YY, Ling EA, Moochhala S. Systemic inflammatory response following acute traumatic brain injury. Front Biosci (Landmark Ed). 2009 Jan 1;14(10):3795-813. doi: 10.2741/3489.
Stein SC, Smith DH. Coagulopathy in traumatic brain injury. Neurocrit Care. 2004;1(4):479-88. doi: 10.1385/NCC:1:4:479.
Wang HC, Wang PM, Lin YJ, Kwan AL, Lin WC, Tsai NW, Cheng BC, Chang WN, Su BY, Kung CT, Lu CH. Serum adhesion molecules, outcome and neuro-psychological function in acute traumatic brain injury patients. Clin Chim Acta. 2013 Aug 23;423:122-9. doi: 10.1016/j.cca.2013.04.023. Epub 2013 Apr 30.
Lehnardt S. Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia. 2010 Feb;58(3):253-63. doi: 10.1002/glia.20928.
Rhind SG, Crnko NT, Baker AJ, Morrison LJ, Shek PN, Scarpelini S, Rizoli SB. Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients. J Neuroinflammation. 2010 Jan 18;7:5. doi: 10.1186/1742-2094-7-5.
Carson MJ, Thrash JC, Walter B. The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin Neurosci Res. 2006 Dec;6(5):237-245. doi: 10.1016/j.cnr.2006.09.004.
Wang HC, Yang TM, Lin YJ, Chen WF, Ho JT, Lin YT, Kwan AL, Lu CH. Serial serum leukocyte apoptosis levels as predictors of outcome in acute traumatic brain injury. Biomed Res Int. 2014;2014:720870. doi: 10.1155/2014/720870. Epub 2014 Apr 17.
Kadhim HJ, Duchateau J, Sebire G. Cytokines and brain injury: invited review. J Intensive Care Med. 2008 Jul-Aug;23(4):236-49. doi: 10.1177/0885066608318458. Epub 2008 May 25.
Wang HC, Lin YJ, Shih FY, Chang HW, Su YJ, Cheng BC, Su CM, Tsai NW, Chang YT, Kwan AL, Lu CH. The Role of Serial Oxidative Stress Levels in Acute Traumatic Brain Injury and as Predictors of Outcome. World Neurosurg. 2016 Mar;87:463-70. doi: 10.1016/j.wneu.2015.10.010. Epub 2015 Oct 23.
Soriano SG, Piva S. Central nervous system inflammation. Eur J Anaesthesiol Suppl. 2008;42:154-9. doi: 10.1017/S0265021507003390.
Balabanov R, Goldman H, Murphy S, Pellizon G, Owen C, Rafols J, Dore-Duffy P. Endothelial cell activation following moderate traumatic brain injury. Neurol Res. 2001 Mar-Apr;23(2-3):175-82. doi: 10.1179/016164101101198514.
Wang HC, Lin YJ, Tsai NW, Su BY, Kung CT, Chen WF, Kwan AL, Lu CH. Serial plasma deoxyribonucleic acid levels as predictors of outcome in acute traumatic brain injury. J Neurotrauma. 2014 Jun 1;31(11):1039-45. doi: 10.1089/neu.2013.3070. Epub 2014 Mar 31.
Godman CA, Chheda KP, Hightower LE, Perdrizet G, Shin DG, Giardina C. Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones. 2010 Jul;15(4):431-42. doi: 10.1007/s12192-009-0159-0. Epub 2009 Dec 1.
Awasthi D, Church DF, Torbati D, Carey ME, Pryor WA. Oxidative stress following traumatic brain injury in rats. Surg Neurol. 1997 Jun;47(6):575-81; discussion 581-2. doi: 10.1016/s0090-3019(96)00461-2.
Tyurin VA, Tyurina YY, Borisenko GG, Sokolova TV, Ritov VB, Quinn PJ, Rose M, Kochanek P, Graham SH, Kagan VE. Oxidative stress following traumatic brain injury in rats: quantitation of biomarkers and detection of free radical intermediates. J Neurochem. 2000 Nov;75(5):2178-89. doi: 10.1046/j.1471-4159.2000.0752178.x.
Efrati S, Fishlev G, Bechor Y, Volkov O, Bergan J, Kliakhandler K, Kamiager I, Gal N, Friedman M, Ben-Jacob E, Golan H. Hyperbaric oxygen induces late neuroplasticity in post stroke patients--randomized, prospective trial. PLoS One. 2013;8(1):e53716. doi: 10.1371/journal.pone.0053716. Epub 2013 Jan 15.
Harch PG. Hyperbaric oxygen therapy for post-concussion syndrome: contradictory conclusions from a study mischaracterized as sham-controlled. J Neurotrauma. 2013 Dec 1;30(23):1995-9. doi: 10.1089/neu.2012.2799. Epub 2013 Oct 11. No abstract available.
Boussi-Gross R, Golan H, Fishlev G, Bechor Y, Volkov O, Bergan J, Friedman M, Hoofien D, Shlamkovitch N, Ben-Jacob E, Efrati S. Hyperbaric oxygen therapy can improve post concussion syndrome years after mild traumatic brain injury - randomized prospective trial. PLoS One. 2013 Nov 15;8(11):e79995. doi: 10.1371/journal.pone.0079995. eCollection 2013.
Chen CY, Wu RW, Tsai NW, Lee MS, Lin WC, Hsu MC, Huang CC, Lai YR, Kung CT, Wang HC, Su YJ, Su CM, Hsiao SY, Cheng BC, Chiang YF, Lu CH. Increased circulating endothelial progenitor cells and improved short-term outcomes in acute non-cardioembolic stroke after hyperbaric oxygen therapy. J Transl Med. 2018 Sep 12;16(1):255. doi: 10.1186/s12967-018-1629-x.
Kendall AC, Whatmore JL, Harries LW, Winyard PG, Eggleton P, Smerdon GR. Different oxygen treatment pressures alter inflammatory gene expression in human endothelial cells. Undersea Hyperb Med. 2013 Mar-Apr;40(2):115-23.
Chen Y, Nadi NS, Chavko M, Auker CR, McCarron RM. Microarray analysis of gene expression in rat cortical neurons exposed to hyperbaric air and oxygen. Neurochem Res. 2009 Jun;34(6):1047-56. doi: 10.1007/s11064-008-9873-8. Epub 2008 Nov 18.
Lin KC, Niu KC, Tsai KJ, Kuo JR, Wang LC, Chio CC, Chang CP. Attenuating inflammation but stimulating both angiogenesis and neurogenesis using hyperbaric oxygen in rats with traumatic brain injury. J Trauma Acute Care Surg. 2012 Mar;72(3):650-9. doi: 10.1097/TA.0b013e31823c575f.
Zhang JH, Lo T, Mychaskiw G, Colohan A. Mechanisms of hyperbaric oxygen and neuroprotection in stroke. Pathophysiology. 2005 Jul;12(1):63-77. doi: 10.1016/j.pathophys.2005.01.003.
Vlodavsky E, Palzur E, Soustiel JF. Hyperbaric oxygen therapy reduces neuroinflammation and expression of matrix metalloproteinase-9 in the rat model of traumatic brain injury. Neuropathol Appl Neurobiol. 2006 Feb;32(1):40-50. doi: 10.1111/j.1365-2990.2005.00698.x.
Huang L, Obenaus A. Hyperbaric oxygen therapy for traumatic brain injury. Med Gas Res. 2011 Sep 6;1(1):21. doi: 10.1186/2045-9912-1-21.
Chen Z, Ni P, Lin Y, Xiao H, Chen J, Qian G, Ye Y, Xu S, Wang J, Yang X. Visual pathway lesion and its development during hyperbaric oxygen treatment: a bold- fMRI and DTI study. J Magn Reson Imaging. 2010 May;31(5):1054-60. doi: 10.1002/jmri.22142.
May M, Milders M, Downey B, Whyte M, Higgins V, Wojcik Z, Amin S, O'Rourke S. Social Behavior and Impairments in Social Cognition Following Traumatic Brain Injury. J Int Neuropsychol Soc. 2017 May;23(5):400-411. doi: 10.1017/S1355617717000182. Epub 2017 Apr 12.
Milders M, Ietswaart M, Crawford JR, Currie D. Social behavior following traumatic brain injury and its association with emotion recognition, understanding of intentions, and cognitive flexibility. J Int Neuropsychol Soc. 2008 Mar;14(2):318-26. doi: 10.1017/S1355617708080351.
Allerdings MD, Alfano DP. Neuropsychological correlates of impaired emotion recognition following traumatic brain injury. Brain Cogn. 2006 Mar;60(2):193-4. doi: 10.1016/j.bandc.2004.09.018.
Tousignant B, Jackson PL, Massicotte E, Beauchamp MH, Achim AM, Vera-Estay E, Bedell G, Sirois K. Impact of traumatic brain injury on social cognition in adolescents and contribution of other higher order cognitive functions. Neuropsychol Rehabil. 2018 Apr;28(3):429-447. doi: 10.1080/09602011.2016.1158114. Epub 2016 Mar 10.
Sirois K, Tousignant B, Boucher N, Achim AM, Beauchamp MH, Bedell G, Massicotte E, Vera-Estay E, Jackson PL. The contribution of social cognition in predicting social participation following moderate and severe TBI in youth. Neuropsychol Rehabil. 2019 Oct;29(9):1383-1398. doi: 10.1080/09602011.2017.1413987. Epub 2017 Dec 18.
Westerhof-Evers HJ, Visser-Keizer AC, Fasotti L, Schonherr MC, Vink M, van der Naalt J, Spikman JM. Effectiveness of a Treatment for Impairments in Social Cognition and Emotion Regulation (T-ScEmo) After Traumatic Brain Injury: A Randomized Controlled Trial. J Head Trauma Rehabil. 2017 Sep/Oct;32(5):296-307. doi: 10.1097/HTR.0000000000000332.
Hart T, Brockway JA, Maiuro RD, Vaccaro M, Fann JR, Mellick D, Harrison-Felix C, Barber J, Temkin N. Anger Self-Management Training for Chronic Moderate to Severe Traumatic Brain Injury: Results of a Randomized Controlled Trial. J Head Trauma Rehabil. 2017 Sep/Oct;32(5):319-331. doi: 10.1097/HTR.0000000000000316.
Ali A, Hall I, Blickwedel J, Hassiotis A. Behavioural and cognitive-behavioural interventions for outwardly-directed aggressive behaviour in people with intellectual disabilities. Cochrane Database Syst Rev. 2015 Apr 7;2015(4):CD003406. doi: 10.1002/14651858.CD003406.pub4.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
201801854A3
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.