Effects of Neurofeedback in Cognitive Deficit in Patients With TBI

NCT ID: NCT03515317

Last Updated: 2024-04-19

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

74 participants

Study Classification

INTERVENTIONAL

Study Start Date

2018-04-22

Study Completion Date

2022-05-11

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Background: Cognitive impairment is common in patients with traumatic brain injury (TBI) at all levels of severity. Such impairments may affect their ability to return to work and thus increase healthcare costs and the associated economic burdens. Both cognitive rehabilitation and stimulant medications are widely used to manage post-traumatic cognitive impairments; however, previous metaanalyses failed to demonstrate their beneficial effects on cognitive recovery in patients with TBI. Nurses, the first-line healthcare providers, should therefore seek and use an alternative approach for dealing with post-traumatic cognitive deficits.

Purpose: To assess the effects of low resolution tomography (LoRETA) Z -score neurofeedback (NF) and theta/beta NF in alleviating cognitive impairments in patients with TBI as well as the possible mechanism through which they provide this alleviation. We hypothesize that adults with TBI receiving LoRETA Z-score NF and theta/beta NF will experience the improvements in cognitive functions while participants in the control group will not.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Cognitive impairment is the most common and debilitating residual symptom of traumatic brain injury (TBI) at all levels of severity and the prevalence of cognitive impairments varies, depending on the severity of the head injury and the time since the injury. Such impairments substantially affect a person's ability to return to productive activity and health-related quality of life. Furthermore, disabilities related to cognitive impairments following TBI increase healthcare costs and economic burden. Memory, attention, and information processing speed are basic cognitive functions. Deficits in such functions subsequently exacerbate disturbances in more complex cognitive functions (e.g., executive function). Therefore, targeting basic cognitive functions is the first priority of clinical treatments for post-traumatic cognitive impairments.

Cognitive rehabilitation, a nonpharmacological intervention, is the first-line treatment for the management of cognitive impairments following TBI. However, the findings of previous reviews are still debated, with one metaanalysis supporting its beneficial effects on attention recovery and two metaanalyses denying the positive association between cognitive rehabilitation and cognitive recovery. Pharmacotherapies (e.g., methylphenidate) has been potentially used to accelerate cognitive recovery in patients with TBI. Nevertheless, recent systematic reviews failed to prove its effects on cognitive recovery. Moreover, adverse effects may contribute to the discontinuation of stimulant medication use.Taken together, current treatments are insufficient for managing post-traumatic cognitive impairments. Nurses, the first-line healthcare providers, should therefore seek and employ an alternative approach to deal with cognitive impairments following TBI.

Both abnormal network connectivity of the brain (e.g., low neural communication between different brain areas) and dysregulated electroencephalographs (EEGs, e.g., increases in alpha and theta, and decrease in beta) following brain damage have been strongly connected to deficits in memory, sustained attention, and information processing speed. Neurofeedback (NF) can target and alter dysregulated brain functioning by giving real-time feedback of EEG activity to patients. Existing literatures have shown that NF might improve attention performance after TBI. Nonetheless, the effects of NF on other cognitive functions, such as memory and speed of information processing, have not been ascertained. In addition, limited methodological features of previous studies, including single group, pre- and posttreatment study design, small number of participants, and inconsistent treatment protocols, restrict their generalizability and practicability. Most importantly, knowledge regarding cognitive improvements being concomitant with changes in EEGs and the long-term effects of NF on cognitive recovery following TBI is still lacking.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Traumatic Brain Injury

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

SINGLE

Outcome Assessors

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

LoRETA Z-score NF group

BrainMaster Discovery 24E (BrainMaster Technologies, Inc.) combined with Neuroguide software (Applied Neuroscience, Inc.) to conduct both LoRETA Z-score NF. A total treatment dosage of 600 minutes is needed.

Group Type EXPERIMENTAL

LoRETA Z-score NF

Intervention Type BEHAVIORAL

LoRETA Z-score NF will be conducted using a 19-lead cap (Electrocap, Inc), which will be placed on the head according to the standard approach of the international 10-20 system with linked ear and ground reference. After the caps will be less than 5 kΩ. During each session, the participants will sit in front of a computer screen on which predesigned games or animations related to the LoRETA Z-score training are played and instructions regarding the inhibitory and reward aspects of the training are taught.

theta/beta NF group

BrainMaster Discovery 24E (BrainMaster Technologies, Inc.) combined with Neuroguide software (Applied Neuroscience, Inc.) to conduct both theta/beta NF. A total treatment dosage of 600 minutes is needed.

Group Type EXPERIMENTAL

theta/beta NF

Intervention Type BEHAVIORAL

The goal of theta/beta NF is to increase the beta power(13-20 Hz) and simultaneously inhibit the theta power (4-8 Hz) relative to a baseline assessed at the beginning of a training session. The electrodes will be placed on Fz and Cz with a linked ear model(A1). The study will use both visual and auditory feedback. Each participant will sit in front of a computer screen on which predesigned games or animations related to the training criteria are played and instructions regarding the inhibitory and reward aspects of the training are taught. The threshold will be set according to 5-min baseline EEG measurements before each session. The thresholds are the mean amplitude of the beta and the theta in 5-min baseline EEG.

control group

The control group involves no NF training. The control group will be designed to parallel the cognitive tasks to control for practice effects due to repeated testing (pre- and post- assessments) and the time effect on cognitive function recovery (spontaneous recovery of cognition).

Group Type NO_INTERVENTION

No interventions assigned to this group

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

LoRETA Z-score NF

LoRETA Z-score NF will be conducted using a 19-lead cap (Electrocap, Inc), which will be placed on the head according to the standard approach of the international 10-20 system with linked ear and ground reference. After the caps will be less than 5 kΩ. During each session, the participants will sit in front of a computer screen on which predesigned games or animations related to the LoRETA Z-score training are played and instructions regarding the inhibitory and reward aspects of the training are taught.

Intervention Type BEHAVIORAL

theta/beta NF

The goal of theta/beta NF is to increase the beta power(13-20 Hz) and simultaneously inhibit the theta power (4-8 Hz) relative to a baseline assessed at the beginning of a training session. The electrodes will be placed on Fz and Cz with a linked ear model(A1). The study will use both visual and auditory feedback. Each participant will sit in front of a computer screen on which predesigned games or animations related to the training criteria are played and instructions regarding the inhibitory and reward aspects of the training are taught. The threshold will be set according to 5-min baseline EEG measurements before each session. The thresholds are the mean amplitude of the beta and the theta in 5-min baseline EEG.

Intervention Type BEHAVIORAL

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Patients aged between 20 to 65 years, with a diagnosis of TBI at least 3 months before enrollment(Chronic phase, with an initial Glasgow Coma Scale score of 3-15 (i.e., initially rated in the attention, memory, and information processing speed) by the participants or treating clinician, are able to communicate in Mandarin Chinese, and are able to complete cognitive tasks (having Rancho Los Amigos Scale score\>9) will be eligible for inclusion in the study.
Minimum Eligible Age

20 Years

Maximum Eligible Age

65 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Taipei Medical University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Hsiao-Yean Chiu

Associate Professor

Responsibility Role PRINCIPAL_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Taipei Medical University

Taipei, , Taiwan

Site Status

Taipei Medical University Hospital.

Taipei, , Taiwan

Site Status

Taipei Medical University-Shuang Ho Hospital,Ministry of Health and Welfare

Taipei, , Taiwan

Site Status

Taipei Municipal Wanfang Hospital (managed by Taipei Medical University)

Taipei, , Taiwan

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Taiwan

References

Explore related publications, articles, or registry entries linked to this study.

Chen PY, Su IC, Shih CY, Liu YC, Su YK, Wei L, Luh HT, Huang HC, Tsai PS, Fan YC, Chiu HY. Effects of Neurofeedback on Cognitive Function, Productive Activity, and Quality of Life in Patients With Traumatic Brain Injury: A Randomized Controlled Trial. Neurorehabil Neural Repair. 2023 May;37(5):277-287. doi: 10.1177/15459683231170539. Epub 2023 Apr 26.

Reference Type DERIVED
PMID: 37125901 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

N201704027

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Cogmed for Working Memory After TBI
NCT02305212 COMPLETED NA
Neurofeedback to Aid Vets' Memory
NCT04446481 COMPLETED NA