Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
59 participants
OBSERVATIONAL
2019-03-18
2019-05-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Magnetic Ressonance Imaging of Temporomandibular Joint
NCT02294799
Clinical and MRI Finding of The Temporomandibular Joint Posterior Disk Displacement
NCT04951895
Study of Temporomandibular Joint Dysfunction
NCT03305315
Clinical and MRI Finding of The Temporomandibular Joint Stuck Disk
NCT04951830
Clinical & MRI Finding of TMJ Disk Perforation
NCT04942743
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_ONLY
PROSPECTIVE
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
MRI scann
MRI will be performed in the TMJ of participants affected with TMD
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* Cochlear implant
* Intracranial vascular clips
* Metal particles in the orbit
* Head or face trauma
* Gout
* Generalized osteoarthrosis
* Joint hyperlaxity
* Congenital malformity
* Facial cysts
* Facial tumors
* Previous TMJ surgery
18 Years
60 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Universidad Mayor
OTHER
University of Chile
OTHER
Universidad de los Andes, Chile
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Gustavo Moncada
Principal investigator, Clinical Professor of Oral Rehabilitation
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Gustavo Moncada, PhD
Role: PRINCIPAL_INVESTIGATOR
UAndes, Santiago, Chile
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
San Vicente de Paul Centro de Diagnóstico
Santiago, , Chile
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Ren YF, Westesson PL, Isberg A. Magnetic resonance imaging of the temporomandibular joint: value of pseudodynamic images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996 Jan;81(1):110-23. doi: 10.1016/s1079-2104(96)80158-2.
Zhang S, Block KT, Frahm J. Magnetic resonance imaging in real time: advances using radial FLASH. J Magn Reson Imaging. 2010 Jan;31(1):101-9. doi: 10.1002/jmri.21987.
Gibbs SJ, Simmons HC 3rd. A protocol for magnetic resonance imaging of the temporomandibular joints. Cranio. 1998 Oct;16(4):236-41. doi: 10.1080/08869634.1998.11746063.
Brady AP, McDevitt L, Stack JP, Downey D. A technique for magnetic resonance imaging of the temporomandibular joint. Clin Radiol. 1993 Feb;47(2):127-33. doi: 10.1016/s0009-9260(05)81189-4.
Eberhard D, Bantleon HP, Steger W. Functional magnetic resonance imaging of temporomandibular joint disorders. Eur J Orthod. 2000 Oct;22(5):489-97. doi: 10.1093/ejo/22.5.489.
Disler DG, McCauley TR, Wirth CR, Fuchs MD. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. AJR Am J Roentgenol. 1995 Aug;165(2):377-82. doi: 10.2214/ajr.165.2.7618561.
Disler DG, McCauley TR, Kelman CG, Fuchs MD, Ratner LM, Wirth CR, Hospodar PP. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol. 1996 Jul;167(1):127-32. doi: 10.2214/ajr.167.1.8659356.
Recht MP, Kramer J, Marcelis S, Pathria MN, Trudell D, Haghighi P, Sartoris DJ, Resnick D. Abnormalities of articular cartilage in the knee: analysis of available MR techniques. Radiology. 1993 May;187(2):473-8. doi: 10.1148/radiology.187.2.8475293.
Moncada G, Cortes D, Millas R, Marholz C. Relationship between disk position and degenerative bone changes in temporomandibular joints of young subjects with TMD. An MRI study. J Clin Pediatr Dent. 2014 Spring;38(3):269-76. doi: 10.17796/jcpd.38.3.w43m8474433n7ur2.
Dias IM, Coelho PR, Picorelli Assis NM, Pereira Leite FP, Devito KL. Evaluation of the correlation between disc displacements and degenerative bone changes of the temporomandibular joint by means of magnetic resonance images. Int J Oral Maxillofac Surg. 2012 Sep;41(9):1051-7. doi: 10.1016/j.ijom.2012.03.005. Epub 2012 Mar 31.
Larheim TA. Role of magnetic resonance imaging in the clinical diagnosis of the temporomandibular joint. Cells Tissues Organs. 2005;180(1):6-21. doi: 10.1159/000086194.
Tanaka E, Detamore MS, Mercuri LG. Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res. 2008 Apr;87(4):296-307. doi: 10.1177/154405910808700406.
Stegenga B. Osteoarthritis of the temporomandibular joint organ and its relationship to disc displacement. J Orofac Pain. 2001 Summer;15(3):193-205.
Campos MI, Campos PS, Cangussu MC, Guimaraes RC, Line SR. Analysis of magnetic resonance imaging characteristics and pain in temporomandibular joints with and without degenerative changes of the condyle. Int J Oral Maxillofac Surg. 2008 Jun;37(6):529-34. doi: 10.1016/j.ijom.2008.02.011. Epub 2008 Apr 28.
Kurita H, Kojima Y, Nakatsuka A, Koike T, Kobayashi H, Kurashina K. Relationship between temporomandibular joint (TMJ)-related pain and morphological changes of the TMJ condyle in patients with temporomandibular disorders. Dentomaxillofac Radiol. 2004 Sep;33(5):329-33. doi: 10.1259/dmfr/13269559.
Hauger O, Dumont E, Chateil JF, Moinard M, Diard F. Water excitation as an alternative to fat saturation in MR imaging: preliminary results in musculoskeletal imaging. Radiology. 2002 Sep;224(3):657-63. doi: 10.1148/radiol.2243011227.
Zhang S, Uecker M, Voit D, Merboldt KD, Frahm J. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction. J Cardiovasc Magn Reson. 2010 Jul 8;12(1):39. doi: 10.1186/1532-429X-12-39.
Li X, Ma BC, Bolbos RI, Stahl R, Lozano J, Zuo J, Lin K, Link TM, Safran M, Majumdar S. Quantitative assessment of bone marrow edema-like lesion and overlying cartilage in knees with osteoarthritis and anterior cruciate ligament tear using MR imaging and spectroscopic imaging at 3 Tesla. J Magn Reson Imaging. 2008 Aug;28(2):453-61. doi: 10.1002/jmri.21437.
Duc SR, Pfirrmann CW, Schmid MR, Zanetti M, Koch PP, Kalberer F, Hodler J. Articular cartilage defects detected with 3D water-excitation true FISP: prospective comparison with sequences commonly used for knee imaging. Radiology. 2007 Oct;245(1):216-23. doi: 10.1148/radiol.2451060990. Epub 2007 Aug 23.
Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004 Aug;232(2):592-8. doi: 10.1148/radiol.2322030976. Epub 2004 Jun 23.
Guler N, Yatmaz PI, Ataoglu H, Emlik D, Uckan S. Temporomandibular internal derangement: correlation of MRI findings with clinical symptoms of pain and joint sounds in patients with bruxing behaviour. Dentomaxillofac Radiol. 2003 Sep;32(5):304-10. doi: 10.1259/dmfr/24534480.
Khan HA, Ahad H, Sharma P, Bajaj P, Hassan N, Kamal Y. Correlation between magnetic resonance imaging and arthroscopic findings in the knee joint. Trauma Mon. 2015 Feb;20(1):e18635. doi: 10.5812/traumamon.18635. Epub 2015 Jan 7.
Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology. 1996 Jan;198(1):209-12. doi: 10.1148/radiology.198.1.8539380.
Wang Y, Wluka AE, Jones G, Ding C, Cicuttini FM. Use magnetic resonance imaging to assess articular cartilage. Ther Adv Musculoskelet Dis. 2012 Apr;4(2):77-97. doi: 10.1177/1759720X11431005.
Welsch GH, Mamisch TC, Weber M, Horger W, Bohndorf K, Trattnig S. High-resolution morphological and biochemical imaging of articular cartilage of the ankle joint at 3.0 T using a new dedicated phased array coil: in vivo reproducibility study. Skeletal Radiol. 2008 Jun;37(6):519-26. doi: 10.1007/s00256-008-0474-z.
Trattnig S, Breitenseher MJ, Huber M, Zettl R, Rottmann B, Haller J, Imhof H. [Determination of cartilage thickness in the ankle joint. an MRT (1.5)-anatomical comparative study]. Rofo. 1997 Apr;166(4):303-6. doi: 10.1055/s-2007-1015429. German.
Siepmann DB, McGovern J, Brittain JH, Reeder SB. High-resolution 3D cartilage imaging with IDEAL SPGR at 3 T. AJR Am J Roentgenol. 2007 Dec;189(6):1510-5. doi: 10.2214/AJR.07.2661.
Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzman-Morales J. The cartilage-bone interface. J Knee Surg. 2012 May;25(2):85-97. doi: 10.1055/s-0032-1319782.
Kuroda S, Tanimoto K, Izawa T, Fujihara S, Koolstra JH, Tanaka E. Biomechanical and biochemical characteristics of the mandibular condylar cartilage. Osteoarthritis Cartilage. 2009 Nov;17(11):1408-15. doi: 10.1016/j.joca.2009.04.025. Epub 2009 May 18.
Brem MH, Pauser J, Yoshioka H, Brenning A, Stratmann J, Hennig FF, Kikinis R, Duryea J, Winalski CS, Lang P. Longitudinal in vivo reproducibility of cartilage volume and surface in osteoarthritis of the knee. Skeletal Radiol. 2007 Apr;36(4):315-20. doi: 10.1007/s00256-006-0208-z. Epub 2007 Jan 12.
Mosher TJ, Smith HE, Collins C, Liu Y, Hancy J, Dardzinski BJ, Smith MB. Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology. 2005 Jan;234(1):245-9. doi: 10.1148/radiol.2341040041. Epub 2004 Nov 18.
Suenaga S, Ogura T, Matsuda T, Noikura T. Severity of synovium and bone marrow abnormalities of the temporomandibular joint in early rheumatoid arthritis: role of gadolinium-enhanced fat-suppressed T1-weighted spin echo MRI. J Comput Assist Tomogr. 2000 May-Jun;24(3):461-5. doi: 10.1097/00004728-200005000-00020.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
UM20-08-2
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.