Effect of Perioperative Intravenous Lidocaine Infusion in Robotic-Assisted Urologic Surgery
NCT ID: NCT03824808
Last Updated: 2023-10-25
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
TERMINATED
PHASE4
21 participants
INTERVENTIONAL
2019-02-26
2020-03-26
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Spinal Morphine or Intravenous Lidocaine in Robot-assisted Upper Urologic Surgery
NCT06349668
The Effect of Perioperative Lidocaine Infusion on Neutrophil Extracellular Trapping
NCT04840511
Investigation of the Effect of Intravenous Lidocaine Infusion on Postoperative Pain Treatment and Bowel Function in Robotic Bowel Surgery
NCT03044808
Use of Perioperative Pain Blocks In Urological Surgery
NCT04426500
Lidocaine Combined With Sufentanil for Preventing Catheter-related Bladder Discomfort
NCT05957653
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Opioids remain the primary source of relief for postoperative pain and have the potential to lead to significant morbidity. Opioids may delay recovery following surgery and have many well-known adverse effects including, but not limited to, nausea, vomiting and prolonged post-operative ileus. Furthermore, in one study, they inadequately provided pain control in 50-60% of postoperative participants. This is a frequent report of participants because of the less than optimal utilization of the medications in fear of their dose dependent adverse effects and various contraindications. On the other hand, surplus medication following surgery is another prominent component of the opioid problem in Urologic practices. Bates et al. found that of the 586 participants that underwent a urological procedure that they reviewed, 67% of them had collected surplus medication. It is both necessary and beneficial for surgeons and participants to utilize dose-sparing strategies following surgery to decrease overall opioid usage and outpatient requirement.
One mechanism that has already been employed for overall improvement in prostatectomies and partial nephrectomies is the use of the robotic assisted approach. Robot assisted partial nephrectomies (RALPN) and robotic assisted laparoscopic prostatectomies (RALP) are becoming a mainstay in urologic surgery and increasing annually. This coincides with a continuous downward trend of laparoscopic and open urologic procedures. RALPN has been shown in a meta-analysis to be more favorable than laparoscopic partial nephrectomies and will continue to be the surgical procedure of choice in the near future. RALP is also now the dominant surgical approach while open and laparoscopic prostatectomies becoming less frequent. Robotic assisted surgery is associated with improved functional outcomes, pain scores, shorter hospital stays, and increases in participants satisfaction in many studies.
While there has been a pronounced increase in robotic surgery over the past 10 years that has demonstrated benefits for participants, there has been limited studies regarding the pain management for these participants. Robotic assisted surgery itself decreases pain levels compared to other approaches, but participants continue to experience mild to moderate pain levels in the postoperative period, which are classically managed with NSAIDs and opioids.
Recently, Enhanced Recovery after Surgery protocols (ERAS) have been implemented in an attempt to decrease pain and opioid use as one outcome. ERAS utilizes multimodal analgesia and has shown improvement of participant satisfaction and perioperative opioid use. Systemic lidocaine is becoming more popular and regularly applied through this protocol and, other practices, in due to its analgesic, anti-hyperalgesia and anti-inflammatory properties that it contains. Systemic lidocaine mechanism of action is not fully understood, but it appears to be multifaceted. Systemic lidocaine inhibits voltage-gated sodium channels in both the peripheral and central nervous system. This is believed to cause an additive effect when combined with inhaled anesthetics which also work on the voltage-gated sodium channels in the central nervous system. Despite this summative effect, this is likely not the primary mechanism of action. Instead, it is believed to predominantly act on anti-inflammatory signaling and through inhibiting neuronal effects. Additionally, it reduces nociception and cardiovascular response to surgical stress and pain.
This is a prospective, randomized, double-blinded, placebo-controlled clinical trial on lidocaine infusion for pain control and opioid consumption in participants undergoing either robotic-assisted laparoscopic prostatectomy or robotic-assisted laparoscopic partial nephrectomy at University of Missouri Hospital. Participants will be randomized in a 1:1 fashion and stratified by the type of surgery to receive a perioperative intravenous 0.8% lidocaine infusion at 1 mg/kg/h if \< age 65 and 0.5 mg/kg/h if ≥ age 65 or an equal volume and rate of normal saline as a placebo. The infusion will be started 15 minutes after endotracheal intubation and continue for 24 hours.
The study that the investigators propose targets an area of urology that is underrepresented in the current literature despite its increasing importance. To the best of the investigator's knowledge, this has not been directly studied before, although it has been utilized numerous times in the ERAS protocol at the University of Missouri Hospital throughout the Division of Urology and Anesthesiology \& Perioperative Medicine in participants undergoing robotic surgery. The benefits of intravenous lidocaine have been demonstrated in other areas and these results warrant a prospective, randomized, double-blinded, placebo controlled study to assess the lidocaine infusion effects for robot assisted laparoscopic prostatectomies and partial nephrectomies. As the number of robotic assisted surgeries and emphasis on opioid reduction continues, the evaluation of systemic lidocaine will be important in improving outcomes in urology.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
QUADRUPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Treatment group
Lidocaine Hydrochloride 0.8% in Dextrose 5% Solution
Lidocaine Hydrochloride 0.8% in Dextrose 5% Solution
Lidocaine Hydrochloride and 5% Dextrose Injection, USP is a sterile, nonpyrogenic solution prepared from lidocaine hydrochloride and dextrose in water for injection.
Control group
0.9% Sodium Chloride Injection
0.9% Sodium Chloride Injection
Sodium Chloride Injection USP is sterile, nonpyrogenic, isotonic and contains no bacteriostatic or antimicrobial agents.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Lidocaine Hydrochloride 0.8% in Dextrose 5% Solution
Lidocaine Hydrochloride and 5% Dextrose Injection, USP is a sterile, nonpyrogenic solution prepared from lidocaine hydrochloride and dextrose in water for injection.
0.9% Sodium Chloride Injection
Sodium Chloride Injection USP is sterile, nonpyrogenic, isotonic and contains no bacteriostatic or antimicrobial agents.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age ≥ 18 years
* ASA I-III
Exclusion Criteria
* Allergy to lidocaine or other amide local anesthetics
* Atrioventricular conduction blocks
* CV instability and concomitant use of alpha agonists or beta blockers
* Recent myocardial infarction (≤ 6 months ago)
* Cardiac arrhythmia disorders
* Stokes-Adams syndrome
* Wolff-Parkinson-White syndrome
* Seizure disorders
* Liver failure or hepatic dysfunction
* Significant renal disease with a serum creatinine ≥ 2 mg/dl
* A family history of malignant hyperthermia
* Current use of opioids or documented history of opioid abuse
* Typically, have less than 3 bowel movement per week
* Combined surgical cases that include robotic prostatectomy or robotic partial nephrectomy
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Missouri-Columbia
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Boris Mraovic
Professor of Clinical Anesthesiology
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Boris Mraovic, MD
Role: PRINCIPAL_INVESTIGATOR
University of Missouri-Columbia
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University Hospital
Columbia, Missouri, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Bates C, Laciak R, Southwick A, Bishoff J. Overprescription of postoperative narcotics: a look at postoperative pain medication delivery, consumption and disposal in urological practice. J Urol. 2011 Feb;185(2):551-5. doi: 10.1016/j.juro.2010.09.088. Epub 2010 Dec 18.
Hedegaard H, Warner M, Minino AM. Drug Overdose Deaths in the United States, 1999-2016. NCHS Data Brief. 2017 Dec;(294):1-8.
Centers for Disease Control and Prevention (CDC). Vital signs: overdoses of prescription opioid pain relievers---United States, 1999--2008. MMWR Morb Mortal Wkly Rep. 2011 Nov 4;60(43):1487-92.
Dunn LK, Durieux ME. Perioperative Use of Intravenous Lidocaine. Anesthesiology. 2017 Apr;126(4):729-737. doi: 10.1097/ALN.0000000000001527. No abstract available.
De Oliveira GS Jr, Fitzgerald P, Streicher LF, Marcus RJ, McCarthy RJ. Systemic lidocaine to improve postoperative quality of recovery after ambulatory laparoscopic surgery. Anesth Analg. 2012 Aug;115(2):262-7. doi: 10.1213/ANE.0b013e318257a380. Epub 2012 May 14.
Joshi GP, Jaschinski T, Bonnet F, Kehlet H; PROSPECT collaboration. Optimal pain management for radical prostatectomy surgery: what is the evidence? BMC Anesthesiol. 2015 Nov 4;15:159. doi: 10.1186/s12871-015-0137-2.
Wheeler M, Oderda GM, Ashburn MA, Lipman AG. Adverse events associated with postoperative opioid analgesia: a systematic review. J Pain. 2002 Jun;3(3):159-80. doi: 10.1054/jpai.2002.123652. No abstract available.
Marcus HJ, Hughes-Hallett A, Payne CJ, Cundy TP, Nandi D, Yang GZ, Darzi A. Trends in the diffusion of robotic surgery: A retrospective observational study. Int J Med Robot. 2017 Dec;13(4):e1870. doi: 10.1002/rcs.1870. Epub 2017 Nov 6.
Choi JE, You JH, Kim DK, Rha KH, Lee SH. Comparison of perioperative outcomes between robotic and laparoscopic partial nephrectomy: a systematic review and meta-analysis. Eur Urol. 2015 May;67(5):891-901. doi: 10.1016/j.eururo.2014.12.028. Epub 2015 Jan 6.
Avulova S, Smith JA Jr. Is Comparison of Robotic to Open Radical Prostatectomy Still Relevant? Eur Urol. 2018 May;73(5):672-673. doi: 10.1016/j.eururo.2018.01.011. Epub 2018 Feb 3. No abstract available.
D'Alonzo RC, Gan TJ, Moul JW, Albala DM, Polascik TJ, Robertson CN, Sun L, Dahm P, Habib AS. A retrospective comparison of anesthetic management of robot-assisted laparoscopic radical prostatectomy versus radical retropubic prostatectomy. J Clin Anesth. 2009 Aug;21(5):322-8. doi: 10.1016/j.jclinane.2008.09.005. Epub 2009 Aug 22.
Batley SE, Prasad V, Vasdev N, Mohan-S G. Post-Operative Pain Management in Patients Undergoing Robotic Urological Surgery. Curr Urol. 2016 Feb;9(1):5-11. doi: 10.1159/000442843. Epub 2016 Feb 10.
Woldu SL, Weinberg AC, Bergman A, Shapiro EY, Korets R, Motamedinia P, Badani KK. Pain and analgesic use after robot-assisted radical prostatectomy. J Endourol. 2014 May;28(5):544-8. doi: 10.1089/end.2013.0783. Epub 2014 Jan 30.
Jendoubi A, Naceur IB, Bouzouita A, Trifa M, Ghedira S, Chebil M, Houissa M. A comparison between intravenous lidocaine and ketamine on acute and chronic pain after open nephrectomy: A prospective, double-blind, randomized, placebo-controlled study. Saudi J Anaesth. 2017 Apr-Jun;11(2):177-184. doi: 10.4103/1658-354X.203027.
Naik BI, Tsang S, Knisely A, Yerra S, Durieux ME. Retrospective case-control non-inferiority analysis of intravenous lidocaine in a colorectal surgery enhanced recovery program. BMC Anesthesiol. 2017 Jan 31;17(1):16. doi: 10.1186/s12871-017-0306-6.
Nakhli MS, Kahloul M, Guizani T, Zedini C, Chaouch A, Naija W. Intravenous lidocaine as adjuvant to general anesthesia in renal surgery. Libyan J Med. 2018 Dec;13(1):1433418. doi: 10.1080/19932820.2018.1433418.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Document Type: Informed Consent Form
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2012402
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.