Movement Characterization in Spastic/Dystonic Cerebral Palsy Using Haptic Feedback in Virtual Reality
NCT ID: NCT03744884
Last Updated: 2020-01-03
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
68 participants
INTERVENTIONAL
2018-12-01
2021-01-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Motor Learning in People With Cerebral Palsy by Using Virtual Reality.
NCT03348943
Functional Strength Training and Virtual Reality in Children With CP
NCT04147468
Rehabilitation Gaming System for Cerebral Palsy
NCT02938754
Virtual Reality vs Functional Strength Training in Children With Cerebral Palsy
NCT05494905
Robotic-assisted Therapy to Improve Manual Dexterity in Children With Cerebral Palsy
NCT02923167
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
This study consists of a randomized controlled trial that uses a virtual reality game-based intervention incorporating fully-automated robotic haptic feedback to aid the the objective, quantitative diagnosis of spasticity and dystonia u=in CP. The study consists of face-to-face assessments of movement before, after, and one-month following the completion of the six-session game-based intervention. Children with spastic/dystonic cerebral palsy and typically developing children between the ages of 7 and 17 will be recruited for this study. The investigators anticipate to recruit a total of 68 participants, 34 with cerebral palsy and 34 typically developing. Both groups of children will be randomly allocated into an intervention or control group using a blocked randomization method. Movement outcomes will be examined for changes in quantitative and clinical measures in children with spastic/dystonic cerebral palsy and typically developing children to aid on the classification of movement disorders. Pair t-tests will be conducted on movement outcomes for both groups of children independently. Positive and negative results will be reported and addressed.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
DIAGNOSTIC
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
CP intervention group
Force efforts with haptic feedback in virtual reality for participants with CP.
Force efforts with haptic feedback in virtual reality.
A virtual reality game-based intervention incorporating fully-automated robotic haptic feedback. The study consists of face-to-face assessments of movement before, after, and one-month following the completion of the six-session game-based intervention. Children with spastic/dystonic cerebral palsy between the ages of 7 and 17 will be recruited for this study along with a group of typically developing children in the same age range. Both groups of children will be randomly allocated into an intervention or control group using a blocked randomization method.
CP control group
Regular activity control group, for participants with CP.
No interventions assigned to this group
TD intervention group
Force efforts haptic feedback in virtual reality. The intervention will be the same as the CP intervention group but for typically developing participants.
Force efforts with haptic feedback in virtual reality.
A virtual reality game-based intervention incorporating fully-automated robotic haptic feedback. The study consists of face-to-face assessments of movement before, after, and one-month following the completion of the six-session game-based intervention. Children with spastic/dystonic cerebral palsy between the ages of 7 and 17 will be recruited for this study along with a group of typically developing children in the same age range. Both groups of children will be randomly allocated into an intervention or control group using a blocked randomization method.
TD control group
Regular activity control group, same as CP no intervention group, but for typically developing participants.
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Force efforts with haptic feedback in virtual reality.
A virtual reality game-based intervention incorporating fully-automated robotic haptic feedback. The study consists of face-to-face assessments of movement before, after, and one-month following the completion of the six-session game-based intervention. Children with spastic/dystonic cerebral palsy between the ages of 7 and 17 will be recruited for this study along with a group of typically developing children in the same age range. Both groups of children will be randomly allocated into an intervention or control group using a blocked randomization method.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Have been diagnosed with dystonic or spastic/dystonic cerebral palsy, for the cerebral palsy groups, or have no neuromuscular conditions, for typically developing groups
* Have mild to no difficulty understanding conversations compared to others of the same age
* Communicates age appropriately or with some difficulty but a new listener can understand
* Have no uncorrected vision
* Have hearing without the need of a hearing aid
* Have no other neural, neuromuscular, or musculoskeletal conditions
* Participation in stable school and/or private physical or occupational therapy with a frequency no greater than two sessions per week, for cerebral palsy groups
* Have no changes in medication for the six months previous to enrollment in the study
* Be medically stable
* Have no other concurrent illness
* Have not received any Botox treatment within three months previous to the initiation of the study
* No use of cardiac pacemakers, hearing aids, or another electronic implanted device
* Absence of allergy to silver or skin adhesives
* Have never had seizures
* Have Manual Ability Classification System (MACS) score I-III
7 Years
17 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
OSF Healthcare System
OTHER
University of Illinois College of Medicine at Peoria
OTHER
University of Illinois at Urbana-Champaign
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Citlali Lopez-Ortiz
Assistant Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Citlali Lopez-Ortiz
Role: PRINCIPAL_INVESTIGATOR
University of Illinois at Urbana-Champaign
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Illinois at Urbana-Champaign
Urbana, Illinois, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Christensen D, Van Naarden Braun K, Doernberg NS, Maenner MJ, Arneson CL, Durkin MS, Benedict RE, Kirby RS, Wingate MS, Fitzgerald R, Yeargin-Allsopp M. Prevalence of cerebral palsy, co-occurring autism spectrum disorders, and motor functioning - Autism and Developmental Disabilities Monitoring Network, USA, 2008. Dev Med Child Neurol. 2014 Jan;56(1):59-65. doi: 10.1111/dmcn.12268. Epub 2013 Oct 1.
Paneth N. Establishing the diagnosis of cerebral palsy. Clin Obstet Gynecol. 2008 Dec;51(4):742-8. doi: 10.1097/GRF.0b013e318187081a.
Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobsson B. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007 Feb;109:8-14.
Liptak GS. Health and well being of adults with cerebral palsy. Curr Opin Neurol. 2008 Apr;21(2):136-42. doi: 10.1097/WCO.0b013e3282f6a499.
Rice J, Skuza P, Baker F, Russo R, Fehlings D. Identification and measurement of dystonia in cerebral palsy. Dev Med Child Neurol. 2017 Dec;59(12):1249-1255. doi: 10.1111/dmcn.13502. Epub 2017 Aug 8.
Sanger TD, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW; Task Force on Childhood Motor Disorders. Classification and definition of disorders causing hypertonia in childhood. Pediatrics. 2003 Jan;111(1):e89-97. doi: 10.1542/peds.111.1.e89.
Sanger TD. Arm trajectories in dyskinetic cerebral palsy have increased random variability. J Child Neurol. 2006 Jul;21(7):551-7. doi: 10.1177/08830738060210070201.
Sellier E, Platt MJ, Andersen GL, Krageloh-Mann I, De La Cruz J, Cans C; Surveillance of Cerebral Palsy Network. Decreasing prevalence in cerebral palsy: a multi-site European population-based study, 1980 to 2003. Dev Med Child Neurol. 2016 Jan;58(1):85-92. doi: 10.1111/dmcn.12865. Epub 2015 Aug 28.
Graham HK, Rosenbaum P, Paneth N, Dan B, Lin JP, Damiano DL, Becher JG, Gaebler-Spira D, Colver A, Reddihough DS, Crompton KE, Lieber RL. Cerebral palsy. Nat Rev Dis Primers. 2016 Jan 7;2:15082. doi: 10.1038/nrdp.2015.82.
Cramer SC, Sur M, Dobkin BH, O'Brien C, Sanger TD, Trojanowski JQ, Rumsey JM, Hicks R, Cameron J, Chen D, Chen WG, Cohen LG, deCharms C, Duffy CJ, Eden GF, Fetz EE, Filart R, Freund M, Grant SJ, Haber S, Kalivas PW, Kolb B, Kramer AF, Lynch M, Mayberg HS, McQuillen PS, Nitkin R, Pascual-Leone A, Reuter-Lorenz P, Schiff N, Sharma A, Shekim L, Stryker M, Sullivan EV, Vinogradov S. Harnessing neuroplasticity for clinical applications. Brain. 2011 Jun;134(Pt 6):1591-609. doi: 10.1093/brain/awr039. Epub 2011 Apr 10.
Sukal-Moulton T, Clancy T, Zhang LQ, Gaebler-Spira D. Clinical application of a robotic ankle training program for cerebral palsy compared to the research laboratory application: does it translate to practice? Arch Phys Med Rehabil. 2014 Aug;95(8):1433-40. doi: 10.1016/j.apmr.2014.04.010. Epub 2014 May 2.
Beveridge B, Feltracco D, Struyf J, Strauss E, Dang S, Phelan S, Wright FV, Gibson BE. "You gotta try it all": Parents' Experiences with Robotic Gait Training for their Children with Cerebral Palsy. Phys Occup Ther Pediatr. 2015;35(4):327-41. doi: 10.3109/01942638.2014.990547. Epub 2014 Dec 20.
Chen K, Ren Y, Gaebler-Spira D, Zhang LQ. Home-based tele-assisted robotic rehabilitation of joint impairments in children with cerebral palsy. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5288-91. doi: 10.1109/EMBC.2014.6944819.
Krebs HI, Fasoli SE, Dipietro L, Fragala-Pinkham M, Hughes R, Stein J, Hogan N. Motor learning characterizes habilitation of children with hemiplegic cerebral palsy. Neurorehabil Neural Repair. 2012 Sep;26(7):855-60. doi: 10.1177/1545968311433427. Epub 2012 Feb 13.
Fasoli SE, Fragala-Pinkham M, Hughes R, Krebs HI, Hogan N, Stein J. Robotic therapy and botulinum toxin type A: a novel intervention approach for cerebral palsy. Am J Phys Med Rehabil. 2008 Dec;87(12):1022-5. doi: 10.1097/PHM.0b013e31817fb346.
Sanger TD, Kaiser J, Placek B. Reaching movements in childhood dystonia contain signal-dependent noise. J Child Neurol. 2005 Jun;20(6):489-96. doi: 10.1177/088307380502000604.
Jankovic J. Treatment of dystonia. Lancet Neurol. 2006 Oct;5(10):864-72. doi: 10.1016/S1474-4422(06)70574-9.
Damiano DL, DeJong SL. A systematic review of the effectiveness of treadmill training and body weight support in pediatric rehabilitation. J Neurol Phys Ther. 2009 Mar;33(1):27-44. doi: 10.1097/NPT.0b013e31819800e2.
Scianni A, Butler JM, Ada L, Teixeira-Salmela LF. Muscle strengthening is not effective in children and adolescents with cerebral palsy: a systematic review. Aust J Physiother. 2009;55(2):81-7. doi: 10.1016/s0004-9514(09)70037-6.
Deon LL, Gaebler-Spira D. Assessment and treatment of movement disorders in children with cerebral palsy. Orthop Clin North Am. 2010 Oct;41(4):507-17. doi: 10.1016/j.ocl.2010.06.001.
Bertucco M, Sanger TD. Current and emerging strategies for treatment of childhood dystonia. J Hand Ther. 2015 Apr-Jun;28(2):185-93; quiz 194. doi: 10.1016/j.jht.2014.11.002. Epub 2014 Nov 15.
Fehlings D, Brown L, Harvey A, Himmelmann K, Lin JP, Macintosh A, Mink JW, Monbaliu E, Rice J, Silver J, Switzer L, Walters I. Pharmacological and neurosurgical interventions for managing dystonia in cerebral palsy: a systematic review. Dev Med Child Neurol. 2018 Apr;60(4):356-366. doi: 10.1111/dmcn.13652. Epub 2018 Feb 6.
Bird BL, Cataldo MF. Experimental analysis of EMG feedback in treating dystonia. Ann Neurol. 1978 Apr;3(4):310-15. doi: 10.1002/ana.410030406.
Neilson PD, McCaughey J. Self-regulation of spasm and spasticity in cerebral palsy. J Neurol Neurosurg Psychiatry. 1982 Apr;45(4):320-30. doi: 10.1136/jnnp.45.4.320.
Deepak KK, Behari M. Specific muscle EMG biofeedback for hand dystonia. Appl Psychophysiol Biofeedback. 1999 Dec;24(4):267-80. doi: 10.1023/a:1022239014808.
Lopez-Ortiz C, Gladden K, Deon L, Schmidt J, Girolami G, Gaebler-Spira D. Dance program for physical rehabilitation and participation in children with cerebral palsy. Arts Health. 2012 Feb 1;4(1):39-54. doi: 10.1080/17533015.2011.564193. Epub 2011 Jun 13.
Yamada K, Yamada Z, Nakazawa S, Matsuoka S. [Determination of FDP by staphylococcal clumping test and the significance of the method in consumption coagulopathy]. Rinsho Ketsueki. 1972 Jun;13(3):411-4. No abstract available. Japanese.
Jobin A, Levin MF. Regulation of stretch reflex threshold in elbow flexors in children with cerebral palsy: a new measure of spasticity. Dev Med Child Neurol. 2000 Aug;42(8):531-40. doi: 10.1017/s0012162200001018.
Monbaliu E, Ortibus E, De Cat J, Dan B, Heyrman L, Prinzie P, De Cock P, Feys H. The Dyskinesia Impairment Scale: a new instrument to measure dystonia and choreoathetosis in dyskinetic cerebral palsy. Dev Med Child Neurol. 2012 Mar;54(3):278-83. doi: 10.1111/j.1469-8749.2011.04209.x.
Stewart K, Harvey A, Johnston LM. A systematic review of scales to measure dystonia and choreoathetosis in children with dyskinetic cerebral palsy. Dev Med Child Neurol. 2017 Aug;59(8):786-795. doi: 10.1111/dmcn.13452. Epub 2017 May 9.
Wagner LV, Davids JR, Hardin JW. Selective Control of the Upper Extremity Scale: validation of a clinical assessment tool for children with hemiplegic cerebral palsy. Dev Med Child Neurol. 2016 Jun;58(6):612-7. doi: 10.1111/dmcn.12949. Epub 2015 Nov 3.
Thorley M, Lannin N, Cusick A, Novak I, Boyd R. Reliability of the quality of upper extremity skills test for children with cerebral palsy aged 2 to 12 years. Phys Occup Ther Pediatr. 2012 Feb;32(1):4-21. doi: 10.3109/01942638.2011.602389. Epub 2011 Aug 15.
Law M, Cadman D, Rosenbaum P, Walter S, Russell D, DeMatteo C. Neurodevelopmental therapy and upper-extremity inhibitive casting for children with cerebral palsy. Dev Med Child Neurol. 1991 May;33(5):379-87. doi: 10.1111/j.1469-8749.1991.tb14897.x.
Klingels K, De Cock P, Desloovere K, Huenaerts C, Molenaers G, Van Nuland I, Huysmans A, Feys H. Comparison of the Melbourne Assessment of Unilateral Upper Limb Function and the Quality of Upper Extremity Skills Test in hemiplegic CP. Dev Med Child Neurol. 2008 Dec;50(12):904-9. doi: 10.1111/j.1469-8749.2008.03123.x. Epub 2008 Sep 20.
Mehrholz J, Wagner K, Meissner D, Grundmann K, Zange C, Koch R, Pohl M. Reliability of the Modified Tardieu Scale and the Modified Ashworth Scale in adult patients with severe brain injury: a comparison study. Clin Rehabil. 2005 Oct;19(7):751-9. doi: 10.1191/0269215505cr889oa.
Wolf AC, Tate RL, Lannin NA, Middleton J, Lane-Brown A, Cameron ID. The World Health Organization Disability Assessment Scale, WHODAS II: reliability and validity in the measurement of activity and participation in a spinal cord injury population. J Rehabil Med. 2012 Sep;44(9):747-55. doi: 10.2340/16501977-1016.
Young SJ, van Doornik J, Sanger TD. Finger muscle control in children with dystonia. Mov Disord. 2011 Jun;26(7):1290-6. doi: 10.1002/mds.23534. Epub 2011 Mar 29.
Frascarelli F, Masia L, Di Rosa G, Cappa P, Petrarca M, Castelli E, Krebs HI. The impact of robotic rehabilitation in children with acquired or congenital movement disorders. Eur J Phys Rehabil Med. 2009 Mar;45(1):135-41.
Weightman A, Preston N, Levesley M, Holt R, Mon-Williams M, Clarke M, Cozens AJ, Bhakta B. Home based computer-assisted upper limb exercise for young children with cerebral palsy: a feasibility study investigating impact on motor control and functional outcome. J Rehabil Med. 2011 Mar;43(4):359-63. doi: 10.2340/16501977-0679.
Chen YP, Howard AM. Effects of robotic therapy on upper-extremity function in children with cerebral palsy: A systematic review. Dev Neurorehabil. 2016;19(1):64-71. doi: 10.3109/17518423.2014.899648. Epub 2014 Apr 11.
Gilliaux M, Renders A, Dispa D, Holvoet D, Sapin J, Dehez B, Detrembleur C, Lejeune TM, Stoquart G. Upper limb robot-assisted therapy in cerebral palsy: a single-blind randomized controlled trial. Neurorehabil Neural Repair. 2015 Feb;29(2):183-92. doi: 10.1177/1545968314541172. Epub 2014 Jul 11.
Tong LZ, Ong HT, Tan JX, Lin J, Burdet E, Ge SS, Teo CL. Pediatric rehabilitation with the reachMAN's modular handle. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:3933-6. doi: 10.1109/EMBC.2015.7319254.
Preston N, Weightman A, Gallagher J, Holt R, Clarke M, Mon-Williams M, Levesley M, Bhakta B. Feasibility of school-based computer-assisted robotic gaming technology for upper limb rehabilitation of children with cerebral palsy. Disabil Rehabil Assist Technol. 2016;11(4):281-8. doi: 10.3109/17483107.2014.932020. Epub 2014 Jun 25.
Kluzik J, Fetters L, Coryell J. Quantification of control: a preliminary study of effects of neurodevelopmental treatment on reaching in children with spastic cerebral palsy. Phys Ther. 1990 Feb;70(2):65-76; discussion 76-8. doi: 10.1093/ptj/70.2.65.
Volman MJ, Wijnroks A, Vermeer A. Effect of task context on reaching performance in children with spastic hemiparesis. Clin Rehabil. 2002 Sep;16(6):684-92. doi: 10.1191/0269215502cr540oa.
Johansson AM, Domellof E, Ronnqvist L. Short- and long-term effects of synchronized metronome training in children with hemiplegic cerebral palsy: a two case study. Dev Neurorehabil. 2012;15(2):160-9. doi: 10.3109/17518423.2011.635608. Epub 2012 Feb 1.
Lebiedowska MK, Gaebler-Spira D, Burns RS, Fisk JR. Biomechanic characteristics of patients with spastic and dystonic hypertonia in cerebral palsy. Arch Phys Med Rehabil. 2004 Jun;85(6):875-80. doi: 10.1016/j.apmr.2003.06.032.
Gordon LM, Keller JL, Stashinko EE, Hoon AH, Bastian AJ. Can spasticity and dystonia be independently measured in cerebral palsy? Pediatr Neurol. 2006 Dec;35(6):375-81. doi: 10.1016/j.pediatrneurol.2006.06.015.
Kim Y, Bulea TC, Damiano DL. Children With Cerebral Palsy Have Greater Stride-to-Stride Variability of Muscle Synergies During Gait Than Typically Developing Children: Implications for Motor Control Complexity. Neurorehabil Neural Repair. 2018 Sep;32(9):834-844. doi: 10.1177/1545968318796333.
Berardelli A, Rothwell JC, Hallett M, Thompson PD, Manfredi M, Marsden CD. The pathophysiology of primary dystonia. Brain. 1998 Jul;121 ( Pt 7):1195-212. doi: 10.1093/brain/121.7.1195.
Tedroff K, Knutson LM, Soderberg GL. Synergistic muscle activation during maximum voluntary contractions in children with and without spastic cerebral palsy. Dev Med Child Neurol. 2006 Oct;48(10):789-96. doi: 10.1017/S0012162206001721.
Quartarone A, Rizzo V, Morgante F. Clinical features of dystonia: a pathophysiological revisitation. Curr Opin Neurol. 2008 Aug;21(4):484-90. doi: 10.1097/WCO.0b013e328307bf07.
Mink JW. Special concerns in defining, studying, and treating dystonia in children. Mov Disord. 2013 Jun 15;28(7):921-5. doi: 10.1002/mds.25548.
McNish RN, Chembrammel P, Speidel NC, Lin JJ, Lopez-Ortiz C. Rehabilitation for Children With Dystonic Cerebral Palsy Using Haptic Feedback in Virtual Reality: Protocol for a Randomized Controlled Trial. JMIR Res Protoc. 2019 Jan 14;8(1):e11470. doi: 10.2196/11470.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
18476
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.