Chemotherapy-Related Changes in Neurocognitive Function and Symptoms in Colorectal Cancer Patients: A Pilot Study
NCT ID: NCT03683004
Last Updated: 2023-09-29
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
40 participants
OBSERVATIONAL
2018-01-22
2020-11-25
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Cognitive Impairment in Colorectal Cancer Patients Receiving Cytotoxic Chemotherapy
NCT05014399
A Longitudinal Investigation of Cognitive Function in Colorectal Cancer Patients
NCT01457287
Cognitive Function and Fatigue in Colorectal Cancer (CRC) Patients After Chemotherapy
NCT00188331
Do Patients With Colorectal Cancer Understand That Their Family is at Risk?
NCT00145860
Colorectal Cancer (CRC) Surveillance Tool: Cognitive and Pilot Testing
NCT03180411
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
CRC patients (Ctx+ group)
Postoperative CRC patients scheduled to begin CTX
No interventions assigned to this group
CRC patients (CT- group)
Postoperative CRC patients who do not receive CTX
No interventions assigned to this group
Healthy control group
Study participants that are demographically matched to CRC study patients and meet all inclusion criteria
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Stage II/IV patients receiving adjuvant CTX (Ctx+ group)
* Stage I/III patients not receiving CTX (Ctx- group)
* Normal or corrected to normal vision (corrected far visual acuity of 20/50 or better)
For demographically-matched healthy controls (HC group)
* Matched to patient receiving CTX on demographics: age (plus or minus 5 years, gender, race, menopausal status, and education (plus or minus 2 years)
* Normal or corrected-to-normal vision (corrected far visual acuity of 20/50 or better)
Exclusion Criteria
Cancer diagnosis/treatment in last 3 yrs. in addition to CRC (exceptionpatients with localized skin cancer) Prior chemotherapy within 1 year for CRC Cognitive impairment (MMSE score \< 25) prior to baseline assessment
Demographically-matched healthy controls:
19 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Nebraska
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Ann M Berger, PhD
Role: PRINCIPAL_INVESTIGATOR
University of Nebraska
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Nerbaska Medical Center
Omaha, Nebraska, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Vardy JL, Dhillon HM, Pond GR, Rourke SB, Bekele T, Renton C, Dodd A, Zhang H, Beale P, Clarke S, Tannock IF. Cognitive Function in Patients With Colorectal Cancer Who Do and Do Not Receive Chemotherapy: A Prospective, Longitudinal, Controlled Study. J Clin Oncol. 2015 Dec 1;33(34):4085-92. doi: 10.1200/JCO.2015.63.0905. Epub 2015 Nov 2.
Vardy J, Dhillon HM, Pond GR, Rourke SB, Xu W, Dodd A, Renton C, Park A, Bekele T, Ringash J, Zhang H, Burkes R, Clarke SJ, Tannock IF. Cognitive function and fatigue after diagnosis of colorectal cancer. Ann Oncol. 2014 Dec;25(12):2404-2412. doi: 10.1093/annonc/mdu448. Epub 2014 Sep 11.
Myers JS. A comparison of the theory of unpleasant symptoms and the conceptual model of chemotherapy-related changes in cognitive function. Oncol Nurs Forum. 2009 Jan;36(1):E1-10. doi: 10.1188/09.ONF.E1-E10.
Von Ah D, Storey S, Jansen CE, Allen DH. Coping strategies and interventions for cognitive changes in patients with cancer. Semin Oncol Nurs. 2013 Nov;29(4):288-99. doi: 10.1016/j.soncn.2013.08.009.
Myers JS. Cancer- and chemotherapy-related cognitive changes: the patient experience. Semin Oncol Nurs. 2013 Nov;29(4):300-7. doi: 10.1016/j.soncn.2013.08.010.
Askren MK, Jung M, Berman MG, Zhang M, Therrien B, Peltier S, Ossher L, Hayes DF, Reuter-Lorenz PA, Cimprich B. Neuromarkers of fatigue and cognitive complaints following chemotherapy for breast cancer: a prospective fMRI investigation. Breast Cancer Res Treat. 2014 Sep;147(2):445-55. doi: 10.1007/s10549-014-3092-6. Epub 2014 Aug 21.
Jung MS, Zhang M, Askren MK, Berman MG, Peltier S, Hayes DF, Therrien B, Reuter-Lorenz PA, Cimprich B. Cognitive dysfunction and symptom burden in women treated for breast cancer: a prospective behavioral and fMRI analysis. Brain Imaging Behav. 2017 Feb;11(1):86-97. doi: 10.1007/s11682-016-9507-8.
Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002 Mar;3(3):201-15. doi: 10.1038/nrn755.
Hopfinger JB, Buonocore MH, Mangun GR. The neural mechanisms of top-down attentional control. Nat Neurosci. 2000 Mar;3(3):284-91. doi: 10.1038/72999.
Wang L, Liu X, Guise KG, Knight RT, Ghajar J, Fan J. Effective connectivity of the fronto-parietal network during attentional control. J Cogn Neurosci. 2010 Mar;22(3):543-53. doi: 10.1162/jocn.2009.21210.
de Fockert J, Rees G, Frith C, Lavie N. Neural correlates of attentional capture in visual search. J Cogn Neurosci. 2004 Jun;16(5):751-9. doi: 10.1162/089892904970762.
Frick MA, Vachani CC, Hampshire MK, Bach C, Arnold-Korzeniowski K, Metz JM, Hill-Kayser CE. Survivorship after lower gastrointestinal cancer: Patient-reported outcomes and planning for care. Cancer. 2017 May 15;123(10):1860-1868. doi: 10.1002/cncr.30527. Epub 2017 Jan 5.
Arndt V, Merx H, Stegmaier C, Ziegler H, Brenner H. Quality of life in patients with colorectal cancer 1 year after diagnosis compared with the general population: a population-based study. J Clin Oncol. 2004 Dec 1;22(23):4829-36. doi: 10.1200/JCO.2004.02.018.
McCleary NJ, Odejide O, Szymonifka J, Ryan D, Hezel A, Meyerhardt JA. Safety and effectiveness of oxaliplatin-based chemotherapy regimens in adults 75 years and older with colorectal cancer. Clin Colorectal Cancer. 2013 Mar;12(1):62-9. doi: 10.1016/j.clcc.2012.09.001. Epub 2012 Oct 24.
Berger AM, Visovsky C, Hertzog M, Holtz S, Loberiza FR Jr. Usual and worst symptom severity and interference with function in breast cancer survivors. J Support Oncol. 2012 May-Jun;10(3):112-8. doi: 10.1016/j.suponc.2011.11.001. Epub 2012 Jan 24.
Berger AM, Grem JL, Visovsky C, Marunda HA, Yurkovich JM. Fatigue and other variables during adjuvant chemotherapy for colon and rectal cancer. Oncol Nurs Forum. 2010 Nov;37(6):E359-69. doi: 10.1188/10.ONF.E359-E369.
Berger AM, Mooney K, Alvarez-Perez A, Breitbart WS, Carpenter KM, Cella D, Cleeland C, Dotan E, Eisenberger MA, Escalante CP, Jacobsen PB, Jankowski C, LeBlanc T, Ligibel JA, Loggers ET, Mandrell B, Murphy BA, Palesh O, Pirl WF, Plaxe SC, Riba MB, Rugo HS, Salvador C, Wagner LI, Wagner-Johnston ND, Zachariah FJ, Bergman MA, Smith C; National comprehensive cancer network. Cancer-Related Fatigue, Version 2.2015. J Natl Compr Canc Netw. 2015 Aug;13(8):1012-39. doi: 10.6004/jnccn.2015.0122.
Berger AM, Mitchell SA, Jacobsen PB, Pirl WF. Screening, evaluation, and management of cancer-related fatigue: Ready for implementation to practice? CA Cancer J Clin. 2015 May-Jun;65(3):190-211. doi: 10.3322/caac.21268. Epub 2015 Mar 11.
Ahles TA, Root JC, Ryan EL. Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J Clin Oncol. 2012 Oct 20;30(30):3675-86. doi: 10.1200/JCO.2012.43.0116. Epub 2012 Sep 24.
Jim HS, Phillips KM, Chait S, Faul LA, Popa MA, Lee YH, Hussin MG, Jacobsen PB, Small BJ. Meta-analysis of cognitive functioning in breast cancer survivors previously treated with standard-dose chemotherapy. J Clin Oncol. 2012 Oct 10;30(29):3578-87. doi: 10.1200/JCO.2011.39.5640. Epub 2012 Aug 27.
Merriman JD, Von Ah D, Miaskowski C, Aouizerat BE. Proposed mechanisms for cancer- and treatment-related cognitive changes. Semin Oncol Nurs. 2013 Nov;29(4):260-9. doi: 10.1016/j.soncn.2013.08.006.
Du XL, Cai Y, Symanski E. Association between chemotherapy and cognitive impairments in a large cohort of patients with colorectal cancer. Int J Oncol. 2013 Jun;42(6):2123-33. doi: 10.3892/ijo.2013.1882. Epub 2013 Apr 4.
Lepage C, Smith AM, Moreau J, Barlow-Krelina E, Wallis N, Collins B, MacKenzie J, Scherling C. A prospective study of grey matter and cognitive function alterations in chemotherapy-treated breast cancer patients. Springerplus. 2014 Aug 19;3:444. doi: 10.1186/2193-1801-3-444. eCollection 2014.
Amidi A, Agerbaek M, Wu LM, Pedersen AD, Mehlsen M, Clausen CR, Demontis D, Borglum AD, Harboll A, Zachariae R. Changes in cognitive functions and cerebral grey matter and their associations with inflammatory markers, endocrine markers, and APOE genotypes in testicular cancer patients undergoing treatment. Brain Imaging Behav. 2017 Jun;11(3):769-783. doi: 10.1007/s11682-016-9552-3.
McDonald BC, Conroy SK, Ahles TA, West JD, Saykin AJ. Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study. J Clin Oncol. 2012 Jul 10;30(20):2500-8. doi: 10.1200/JCO.2011.38.5674. Epub 2012 Jun 4.
McDonald BC, Conroy SK, Ahles TA, West JD, Saykin AJ. Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Cancer Res Treat. 2010 Oct;123(3):819-28. doi: 10.1007/s10549-010-1088-4. Epub 2010 Aug 6.
Deprez S, Amant F, Smeets A, Peeters R, Leemans A, Van Hecke W, Verhoeven JS, Christiaens MR, Vandenberghe J, Vandenbulcke M, Sunaert S. Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. J Clin Oncol. 2012 Jan 20;30(3):274-81. doi: 10.1200/JCO.2011.36.8571. Epub 2011 Dec 19.
Kam JWY, Brenner CA, Handy TC, Boyd LA, Liu-Ambrose T, Lim HJ, Hayden S, Campbell KL. Sustained attention abnormalities in breast cancer survivors with cognitive deficits post chemotherapy: An electrophysiological study. Clin Neurophysiol. 2016 Jan;127(1):369-378. doi: 10.1016/j.clinph.2015.03.007. Epub 2015 Mar 21.
Kreukels BP, van Dam FS, Ridderinkhof KR, Boogerd W, Schagen SB. Persistent neurocognitive problems after adjuvant chemotherapy for breast cancer. Clin Breast Cancer. 2008 Feb;8(1):80-7. doi: 10.3816/CBC.2008.n.006.
Kreukels BP, Schagen SB, Ridderinkhof KR, Boogerd W, Hamburger HL, van Dam FS. Electrophysiological correlates of information processing in breast-cancer patients treated with adjuvant chemotherapy. Breast Cancer Res Treat. 2005 Nov;94(1):53-61. doi: 10.1007/s10549-005-7093-3.
Kreukels BP, Schagen SB, Ridderinkhof KR, Boogerd W, Hamburger HL, Muller MJ, van Dam FS. Effects of high-dose and conventional-dose adjuvant chemotherapy on long-term cognitive sequelae in patients with breast cancer: an electrophysiologic study. Clin Breast Cancer. 2006 Apr;7(1):67-78. doi: 10.3816/CBC.2006.n.015.
Bender CM, Thelen BD. Cancer and cognitive changes: the complexity of the problem. Semin Oncol Nurs. 2013 Nov;29(4):232-7. doi: 10.1016/j.soncn.2013.08.003.
Von Ah D. Cognitive changes associated with cancer and cancer treatment: state of the science. Clin J Oncol Nurs. 2015 Feb;19(1):47-56. doi: 10.1188/15.CJON.19-01AP.
Hedayati E, Alinaghizadeh H, Schedin A, Nyman H, Albertsson M. Effects of adjuvant treatment on cognitive function in women with early breast cancer. Eur J Oncol Nurs. 2012 Jul;16(3):315-22. doi: 10.1016/j.ejon.2011.07.006. Epub 2011 Sep 9.
Quesnel C, Savard J, Ivers H. Cognitive impairments associated with breast cancer treatments: results from a longitudinal study. Breast Cancer Res Treat. 2009 Jul;116(1):113-23. doi: 10.1007/s10549-008-0114-2. Epub 2008 Jul 16.
Shilling V, Jenkins V, Morris R, Deutsch G, Bloomfield D. The effects of adjuvant chemotherapy on cognition in women with breast cancer--preliminary results of an observational longitudinal study. Breast. 2005 Apr;14(2):142-50. doi: 10.1016/j.breast.2004.10.004.
Stewart A, Collins B, Mackenzie J, Tomiak E, Verma S, Bielajew C. The cognitive effects of adjuvant chemotherapy in early stage breast cancer: a prospective study. Psychooncology. 2008 Feb;17(2):122-30. doi: 10.1002/pon.1210.
Tager FA, McKinley PS, Schnabel FR, El-Tamer M, Cheung YK, Fang Y, Golden CR, Frosch ME, Habif U, Mulligan MM, Chen IS, Hershman DL. The cognitive effects of chemotherapy in post-menopausal breast cancer patients: a controlled longitudinal study. Breast Cancer Res Treat. 2010 Aug;123(1):25-34. doi: 10.1007/s10549-009-0606-8. Epub 2009 Nov 6.
Collins B, Mackenzie J, Stewart A, Bielajew C, Verma S. Cognitive effects of hormonal therapy in early stage breast cancer patients: a prospective study. Psychooncology. 2009 Aug;18(8):811-21. doi: 10.1002/pon.1453.
Wefel JS, Vidrine DJ, Marani SK, Swartz RJ, Veramonti TL, Meyers CA, Hoekstra HJ, Hoekstra-Weebers JE, Gritz ER. A prospective study of cognitive function in men with non-seminomatous germ cell tumors. Psychooncology. 2014 Jun;23(6):626-33. doi: 10.1002/pon.3453. Epub 2013 Dec 16.
Cruzado JA, Lopez-Santiago S, Martinez-Marin V, Jose-Moreno G, Custodio AB, Feliu J. Longitudinal study of cognitive dysfunctions induced by adjuvant chemotherapy in colon cancer patients. Support Care Cancer. 2014 Jul;22(7):1815-23. doi: 10.1007/s00520-014-2147-x. Epub 2014 Feb 18.
Collins B, MacKenzie J, Tasca GA, Scherling C, Smith A. Cognitive effects of chemotherapy in breast cancer patients: a dose-response study. Psychooncology. 2013 Jul;22(7):1517-27. doi: 10.1002/pon.3163. Epub 2012 Aug 30.
Deprez S, Amant F, Yigit R, Porke K, Verhoeven J, Van den Stock J, Smeets A, Christiaens MR, Leemans A, Van Hecke W, Vandenberghe J, Vandenbulcke M, Sunaert S. Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Hum Brain Mapp. 2011 Mar;32(3):480-93. doi: 10.1002/hbm.21033.
Ahles TA, Saykin AJ, McDonald BC, Li Y, Furstenberg CT, Hanscom BS, Mulrooney TJ, Schwartz GN, Kaufman PA. Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. J Clin Oncol. 2010 Oct 10;28(29):4434-40. doi: 10.1200/JCO.2009.27.0827. Epub 2010 Sep 13.
Jenkins V, Thwaites R, Cercignani M, Sacre S, Harrison N, Whiteley-Jones H, Mullen L, Chamberlain G, Davies K, Zammit C, Matthews L, Harder H. A feasibility study exploring the role of pre-operative assessment when examining the mechanism of 'chemo-brain' in breast cancer patients. Springerplus. 2016 Mar 31;5:390. doi: 10.1186/s40064-016-2030-y. eCollection 2016.
Kreukels BPC, Hamburger HL, de Ruiter MB, van Dam FSAM, Ridderinkhof KR, Boogerd W, Schagen SB. ERP amplitude and latency in breast cancer survivors treated with adjuvant chemotherapy. Clin Neurophysiol. 2008 Mar;119(3):533-541. doi: 10.1016/j.clinph.2007.11.011.
Luck SJ, Hillyard SA. Electrophysiological correlates of feature analysis during visual search. Psychophysiology. 1994 May;31(3):291-308. doi: 10.1111/j.1469-8986.1994.tb02218.x.
Vogel EK, Machizawa MG. Neural activity predicts individual differences in visual working memory capacity. Nature. 2004 Apr 15;428(6984):748-51. doi: 10.1038/nature02447.
Painter DR, Dux PE, Mattingley JB. Distinct roles of the intraparietal sulcus and temporoparietal junction in attentional capture from distractor features: An individual differences approach. Neuropsychologia. 2015 Jul;74:50-62. doi: 10.1016/j.neuropsychologia.2015.02.029. Epub 2015 Feb 24.
Harris AM, Dux PE, Jones CN, Mattingley JB. Distinct roles of theta and alpha oscillations in the involuntary capture of goal-directed attention. Neuroimage. 2017 May 15;152:171-183. doi: 10.1016/j.neuroimage.2017.03.008. Epub 2017 Mar 6.
Vogel EK, McCollough AW, Machizawa MG. Neural measures reveal individual differences in controlling access to working memory. Nature. 2005 Nov 24;438(7067):500-3. doi: 10.1038/nature04171.
Lopez Zunini RA, Scherling C, Wallis N, Collins B, MacKenzie J, Bielajew C, Smith AM. Differences in verbal memory retrieval in breast cancer chemotherapy patients compared to healthy controls: a prospective fMRI study. Brain Imaging Behav. 2013 Dec;7(4):460-77. doi: 10.1007/s11682-012-9213-0.
Schrepf A, Lutgendorf SK, Pyter LM. Pre-treatment effects of peripheral tumors on brain and behavior: neuroinflammatory mechanisms in humans and rodents. Brain Behav Immun. 2015 Oct;49:1-17. doi: 10.1016/j.bbi.2015.04.010. Epub 2015 May 6.
Bower JE. Cancer-related fatigue--mechanisms, risk factors, and treatments. Nat Rev Clin Oncol. 2014 Oct;11(10):597-609. doi: 10.1038/nrclinonc.2014.127. Epub 2014 Aug 12.
Cashdollar N, Fukuda K, Bocklage A, Aurtenetxe S, Vogel EK, Gazzaley A. Prolonged disengagement from attentional capture in normal aging. Psychol Aging. 2013 Mar;28(1):77-86. doi: 10.1037/a0029899. Epub 2012 Oct 15.
Jost K, Bryck RL, Vogel EK, Mayr U. Are old adults just like low working memory young adults? Filtering efficiency and age differences in visual working memory. Cereb Cortex. 2011 May;21(5):1147-54. doi: 10.1093/cercor/bhq185. Epub 2010 Sep 30.
Vakoc BJ, Fukumura D, Jain RK, Bouma BE. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nat Rev Cancer. 2012 Apr 5;12(5):363-8. doi: 10.1038/nrc3235.
Wang XS, Williams LA, Eng C, Mendoza TR, Shah NA, Kirkendoll KJ, Shah PK, Trask PC, Palos GR, Cleeland CS. Validation and application of a module of the M. D. Anderson Symptom Inventory for measuring multiple symptoms in patients with gastrointestinal cancer (the MDASI-GI). Cancer. 2010 Apr 15;116(8):2053-63. doi: 10.1002/cncr.24920.
Ware J Jr, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996 Mar;34(3):220-33. doi: 10.1097/00005650-199603000-00003.
Lai JS, Butt Z, Wagner L, Sweet JJ, Beaumont JL, Vardy J, Jacobsen PB, Shapiro PJ, Jacobs SR, Cella D. Evaluating the dimensionality of perceived cognitive function. J Pain Symptom Manage. 2009 Jun;37(6):982-95. doi: 10.1016/j.jpainsymman.2008.07.012.
Smith S, Jenkinson M, Beckmann C, Miller K, Woolrich M. Meaningful design and contrast estimability in FMRI. Neuroimage. 2007 Jan 1;34(1):127-36. doi: 10.1016/j.neuroimage.2006.09.019. Epub 2006 Oct 27.
Desmond JE, Glover GH. Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods. 2002 Aug 30;118(2):115-28. doi: 10.1016/s0165-0270(02)00121-8.
Birn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage. 2013 Dec;83:550-8. doi: 10.1016/j.neuroimage.2013.05.099. Epub 2013 Jun 6.
Pajula J, Tohka J. How Many Is Enough? Effect of Sample Size in Inter-Subject Correlation Analysis of fMRI. Comput Intell Neurosci. 2016;2016:2094601. doi: 10.1155/2016/2094601. Epub 2016 Jan 13.
Berger AM, Grem J, Garlinghouse M, Lyden E, Schmid K. Neurocognitive function and quality-of-life in patients with colorectal cancer. Eur J Oncol Nurs. 2023 Jun;64:102304. doi: 10.1016/j.ejon.2023.102304. Epub 2023 Mar 24.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
0228-17-EP
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.