Chemotherapy-Related Changes in Neurocognitive Function and Symptoms in Colorectal Cancer Patients: A Pilot Study

NCT ID: NCT03683004

Last Updated: 2023-09-29

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

40 participants

Study Classification

OBSERVATIONAL

Study Start Date

2018-01-22

Study Completion Date

2020-11-25

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Cancer treatments have successfully improved cancer outcomes but frequently negatively impact quality of life in cancer survivors. In particular, chemotherapy (CTX) has been associated with impaired cognitive abilities such as concentration and memory. The goal is to investigate the neural mechanisms of chemotherapy-related cognitive impairment (CRCI) using an interdisciplinary translational approach. Previous research in this area lacks diversity in studied cancer populations and treatments focusing primarily on breast cancer and provides limited understanding of how CRCI emerges from changes in neural structure, function, and connectivity. To overcome these limitations, this feasibility/pilot study aims to investigate CRCI in patients with colorectal cancer (CRC).

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

A growing public health and oncology nursing concern is the likelihood of colorectal cancer (CRC) survivors experiencing decline in long-term physical and mental functional status following cancer diagnosis and treatment. Prior to receiving treatment, cognitive impairment in processing speed, spatial working memory, and verbal memory has been noted in 45% of CRC patients relative to 15% of healthy controls (HC). Following adjuvant chemotherapy, cognitive function is more impaired in CRC patients who received chemotherapy (Ctx+ group) compared to CRC patients not receiving chemotherapy (Ctx- group) and HC participants. These studies show: (1) CRC patients are at a high risk for cognitive impairment and (2) Ctx+ patients are more likely to decline in cognitive function during treatment. These cancer and chemotherapy-related changes in cognitive function have been associated with several quality of life factors, including physiological and concurrent symptoms, and physical and mental functional status. In contrast, the neural mechanisms of cognitive impairment in CRC patients is related to changes in the Executive Function Network (EFN). The EFN promotes long-range communication between frontal and parietal cortical regions, and is associated with attentional control processes. The empirical goals studying CRC patients are two-fold: (1) Develop a core set of cognitive function, event related potential (ERP) measures from electroencephalogram (EEG), and resting-state functional magnetic resonance imaging (rsfMRI) measures to elucidate the relationship between impaired attentional control and EFN dysfunction and (2) Increase understanding of the link between neurocognitive impairment with concurrent symptom severity and impact on functioning. The investigators propose a longitudinal, prospective cohort pilot design to study post-operative CRC patients scheduled to begin adjuvant chemotherapy (Ctx+ group). Comparison groups will include post-operative CRC patients not receiving chemotherapy (Ctx- group) and healthy controls demographically matched to Ctx+ participants (HC group). All participants (N=60; 20 per group) will complete an additional 1-hour study visits at baseline and 24-weeks to collect rsfMRI measurements Ctx+ patients will complete baseline assessment after surgery but before starting chemotherapy, CTx- patients will complete baseline assessments 4-6 weeks after surgery and HC after matched and consented.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Colorectal Cancer

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

CRC patients (Ctx+ group)

Postoperative CRC patients scheduled to begin CTX

No interventions assigned to this group

CRC patients (CT- group)

Postoperative CRC patients who do not receive CTX

No interventions assigned to this group

Healthy control group

Study participants that are demographically matched to CRC study patients and meet all inclusion criteria

No interventions assigned to this group

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

CRC adenocarcinoma patients:

* Stage II/IV patients receiving adjuvant CTX (Ctx+ group)
* Stage I/III patients not receiving CTX (Ctx- group)
* Normal or corrected to normal vision (corrected far visual acuity of 20/50 or better)

For demographically-matched healthy controls (HC group)

* Matched to patient receiving CTX on demographics: age (plus or minus 5 years, gender, race, menopausal status, and education (plus or minus 2 years)
* Normal or corrected-to-normal vision (corrected far visual acuity of 20/50 or better)

Exclusion Criteria

CRC patients:

Cancer diagnosis/treatment in last 3 yrs. in addition to CRC (exceptionpatients with localized skin cancer) Prior chemotherapy within 1 year for CRC Cognitive impairment (MMSE score \< 25) prior to baseline assessment

Demographically-matched healthy controls:
Minimum Eligible Age

19 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Nebraska

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Ann M Berger, PhD

Role: PRINCIPAL_INVESTIGATOR

University of Nebraska

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of Nerbaska Medical Center

Omaha, Nebraska, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Vardy JL, Dhillon HM, Pond GR, Rourke SB, Bekele T, Renton C, Dodd A, Zhang H, Beale P, Clarke S, Tannock IF. Cognitive Function in Patients With Colorectal Cancer Who Do and Do Not Receive Chemotherapy: A Prospective, Longitudinal, Controlled Study. J Clin Oncol. 2015 Dec 1;33(34):4085-92. doi: 10.1200/JCO.2015.63.0905. Epub 2015 Nov 2.

Reference Type BACKGROUND
PMID: 26527785 (View on PubMed)

Vardy J, Dhillon HM, Pond GR, Rourke SB, Xu W, Dodd A, Renton C, Park A, Bekele T, Ringash J, Zhang H, Burkes R, Clarke SJ, Tannock IF. Cognitive function and fatigue after diagnosis of colorectal cancer. Ann Oncol. 2014 Dec;25(12):2404-2412. doi: 10.1093/annonc/mdu448. Epub 2014 Sep 11.

Reference Type BACKGROUND
PMID: 25214544 (View on PubMed)

Myers JS. A comparison of the theory of unpleasant symptoms and the conceptual model of chemotherapy-related changes in cognitive function. Oncol Nurs Forum. 2009 Jan;36(1):E1-10. doi: 10.1188/09.ONF.E1-E10.

Reference Type BACKGROUND
PMID: 19136326 (View on PubMed)

Von Ah D, Storey S, Jansen CE, Allen DH. Coping strategies and interventions for cognitive changes in patients with cancer. Semin Oncol Nurs. 2013 Nov;29(4):288-99. doi: 10.1016/j.soncn.2013.08.009.

Reference Type BACKGROUND
PMID: 24183160 (View on PubMed)

Myers JS. Cancer- and chemotherapy-related cognitive changes: the patient experience. Semin Oncol Nurs. 2013 Nov;29(4):300-7. doi: 10.1016/j.soncn.2013.08.010.

Reference Type BACKGROUND
PMID: 24183161 (View on PubMed)

Askren MK, Jung M, Berman MG, Zhang M, Therrien B, Peltier S, Ossher L, Hayes DF, Reuter-Lorenz PA, Cimprich B. Neuromarkers of fatigue and cognitive complaints following chemotherapy for breast cancer: a prospective fMRI investigation. Breast Cancer Res Treat. 2014 Sep;147(2):445-55. doi: 10.1007/s10549-014-3092-6. Epub 2014 Aug 21.

Reference Type BACKGROUND
PMID: 25138546 (View on PubMed)

Jung MS, Zhang M, Askren MK, Berman MG, Peltier S, Hayes DF, Therrien B, Reuter-Lorenz PA, Cimprich B. Cognitive dysfunction and symptom burden in women treated for breast cancer: a prospective behavioral and fMRI analysis. Brain Imaging Behav. 2017 Feb;11(1):86-97. doi: 10.1007/s11682-016-9507-8.

Reference Type BACKGROUND
PMID: 26809289 (View on PubMed)

Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002 Mar;3(3):201-15. doi: 10.1038/nrn755.

Reference Type BACKGROUND
PMID: 11994752 (View on PubMed)

Hopfinger JB, Buonocore MH, Mangun GR. The neural mechanisms of top-down attentional control. Nat Neurosci. 2000 Mar;3(3):284-91. doi: 10.1038/72999.

Reference Type BACKGROUND
PMID: 10700262 (View on PubMed)

Wang L, Liu X, Guise KG, Knight RT, Ghajar J, Fan J. Effective connectivity of the fronto-parietal network during attentional control. J Cogn Neurosci. 2010 Mar;22(3):543-53. doi: 10.1162/jocn.2009.21210.

Reference Type BACKGROUND
PMID: 19301995 (View on PubMed)

de Fockert J, Rees G, Frith C, Lavie N. Neural correlates of attentional capture in visual search. J Cogn Neurosci. 2004 Jun;16(5):751-9. doi: 10.1162/089892904970762.

Reference Type BACKGROUND
PMID: 15200703 (View on PubMed)

Frick MA, Vachani CC, Hampshire MK, Bach C, Arnold-Korzeniowski K, Metz JM, Hill-Kayser CE. Survivorship after lower gastrointestinal cancer: Patient-reported outcomes and planning for care. Cancer. 2017 May 15;123(10):1860-1868. doi: 10.1002/cncr.30527. Epub 2017 Jan 5.

Reference Type BACKGROUND
PMID: 28055110 (View on PubMed)

Arndt V, Merx H, Stegmaier C, Ziegler H, Brenner H. Quality of life in patients with colorectal cancer 1 year after diagnosis compared with the general population: a population-based study. J Clin Oncol. 2004 Dec 1;22(23):4829-36. doi: 10.1200/JCO.2004.02.018.

Reference Type BACKGROUND
PMID: 15570086 (View on PubMed)

McCleary NJ, Odejide O, Szymonifka J, Ryan D, Hezel A, Meyerhardt JA. Safety and effectiveness of oxaliplatin-based chemotherapy regimens in adults 75 years and older with colorectal cancer. Clin Colorectal Cancer. 2013 Mar;12(1):62-9. doi: 10.1016/j.clcc.2012.09.001. Epub 2012 Oct 24.

Reference Type BACKGROUND
PMID: 23102897 (View on PubMed)

Berger AM, Visovsky C, Hertzog M, Holtz S, Loberiza FR Jr. Usual and worst symptom severity and interference with function in breast cancer survivors. J Support Oncol. 2012 May-Jun;10(3):112-8. doi: 10.1016/j.suponc.2011.11.001. Epub 2012 Jan 24.

Reference Type BACKGROUND
PMID: 22277573 (View on PubMed)

Berger AM, Grem JL, Visovsky C, Marunda HA, Yurkovich JM. Fatigue and other variables during adjuvant chemotherapy for colon and rectal cancer. Oncol Nurs Forum. 2010 Nov;37(6):E359-69. doi: 10.1188/10.ONF.E359-E369.

Reference Type BACKGROUND
PMID: 21059569 (View on PubMed)

Berger AM, Mooney K, Alvarez-Perez A, Breitbart WS, Carpenter KM, Cella D, Cleeland C, Dotan E, Eisenberger MA, Escalante CP, Jacobsen PB, Jankowski C, LeBlanc T, Ligibel JA, Loggers ET, Mandrell B, Murphy BA, Palesh O, Pirl WF, Plaxe SC, Riba MB, Rugo HS, Salvador C, Wagner LI, Wagner-Johnston ND, Zachariah FJ, Bergman MA, Smith C; National comprehensive cancer network. Cancer-Related Fatigue, Version 2.2015. J Natl Compr Canc Netw. 2015 Aug;13(8):1012-39. doi: 10.6004/jnccn.2015.0122.

Reference Type BACKGROUND
PMID: 26285247 (View on PubMed)

Berger AM, Mitchell SA, Jacobsen PB, Pirl WF. Screening, evaluation, and management of cancer-related fatigue: Ready for implementation to practice? CA Cancer J Clin. 2015 May-Jun;65(3):190-211. doi: 10.3322/caac.21268. Epub 2015 Mar 11.

Reference Type BACKGROUND
PMID: 25760293 (View on PubMed)

Ahles TA, Root JC, Ryan EL. Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J Clin Oncol. 2012 Oct 20;30(30):3675-86. doi: 10.1200/JCO.2012.43.0116. Epub 2012 Sep 24.

Reference Type BACKGROUND
PMID: 23008308 (View on PubMed)

Jim HS, Phillips KM, Chait S, Faul LA, Popa MA, Lee YH, Hussin MG, Jacobsen PB, Small BJ. Meta-analysis of cognitive functioning in breast cancer survivors previously treated with standard-dose chemotherapy. J Clin Oncol. 2012 Oct 10;30(29):3578-87. doi: 10.1200/JCO.2011.39.5640. Epub 2012 Aug 27.

Reference Type BACKGROUND
PMID: 22927526 (View on PubMed)

Merriman JD, Von Ah D, Miaskowski C, Aouizerat BE. Proposed mechanisms for cancer- and treatment-related cognitive changes. Semin Oncol Nurs. 2013 Nov;29(4):260-9. doi: 10.1016/j.soncn.2013.08.006.

Reference Type BACKGROUND
PMID: 24183157 (View on PubMed)

Du XL, Cai Y, Symanski E. Association between chemotherapy and cognitive impairments in a large cohort of patients with colorectal cancer. Int J Oncol. 2013 Jun;42(6):2123-33. doi: 10.3892/ijo.2013.1882. Epub 2013 Apr 4.

Reference Type BACKGROUND
PMID: 23563930 (View on PubMed)

Lepage C, Smith AM, Moreau J, Barlow-Krelina E, Wallis N, Collins B, MacKenzie J, Scherling C. A prospective study of grey matter and cognitive function alterations in chemotherapy-treated breast cancer patients. Springerplus. 2014 Aug 19;3:444. doi: 10.1186/2193-1801-3-444. eCollection 2014.

Reference Type BACKGROUND
PMID: 25184110 (View on PubMed)

Amidi A, Agerbaek M, Wu LM, Pedersen AD, Mehlsen M, Clausen CR, Demontis D, Borglum AD, Harboll A, Zachariae R. Changes in cognitive functions and cerebral grey matter and their associations with inflammatory markers, endocrine markers, and APOE genotypes in testicular cancer patients undergoing treatment. Brain Imaging Behav. 2017 Jun;11(3):769-783. doi: 10.1007/s11682-016-9552-3.

Reference Type BACKGROUND
PMID: 27240852 (View on PubMed)

McDonald BC, Conroy SK, Ahles TA, West JD, Saykin AJ. Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study. J Clin Oncol. 2012 Jul 10;30(20):2500-8. doi: 10.1200/JCO.2011.38.5674. Epub 2012 Jun 4.

Reference Type BACKGROUND
PMID: 22665542 (View on PubMed)

McDonald BC, Conroy SK, Ahles TA, West JD, Saykin AJ. Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Cancer Res Treat. 2010 Oct;123(3):819-28. doi: 10.1007/s10549-010-1088-4. Epub 2010 Aug 6.

Reference Type BACKGROUND
PMID: 20690040 (View on PubMed)

Deprez S, Amant F, Smeets A, Peeters R, Leemans A, Van Hecke W, Verhoeven JS, Christiaens MR, Vandenberghe J, Vandenbulcke M, Sunaert S. Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. J Clin Oncol. 2012 Jan 20;30(3):274-81. doi: 10.1200/JCO.2011.36.8571. Epub 2011 Dec 19.

Reference Type BACKGROUND
PMID: 22184379 (View on PubMed)

Kam JWY, Brenner CA, Handy TC, Boyd LA, Liu-Ambrose T, Lim HJ, Hayden S, Campbell KL. Sustained attention abnormalities in breast cancer survivors with cognitive deficits post chemotherapy: An electrophysiological study. Clin Neurophysiol. 2016 Jan;127(1):369-378. doi: 10.1016/j.clinph.2015.03.007. Epub 2015 Mar 21.

Reference Type BACKGROUND
PMID: 25868929 (View on PubMed)

Kreukels BP, van Dam FS, Ridderinkhof KR, Boogerd W, Schagen SB. Persistent neurocognitive problems after adjuvant chemotherapy for breast cancer. Clin Breast Cancer. 2008 Feb;8(1):80-7. doi: 10.3816/CBC.2008.n.006.

Reference Type BACKGROUND
PMID: 18501062 (View on PubMed)

Kreukels BP, Schagen SB, Ridderinkhof KR, Boogerd W, Hamburger HL, van Dam FS. Electrophysiological correlates of information processing in breast-cancer patients treated with adjuvant chemotherapy. Breast Cancer Res Treat. 2005 Nov;94(1):53-61. doi: 10.1007/s10549-005-7093-3.

Reference Type BACKGROUND
PMID: 16175317 (View on PubMed)

Kreukels BP, Schagen SB, Ridderinkhof KR, Boogerd W, Hamburger HL, Muller MJ, van Dam FS. Effects of high-dose and conventional-dose adjuvant chemotherapy on long-term cognitive sequelae in patients with breast cancer: an electrophysiologic study. Clin Breast Cancer. 2006 Apr;7(1):67-78. doi: 10.3816/CBC.2006.n.015.

Reference Type BACKGROUND
PMID: 16764746 (View on PubMed)

Bender CM, Thelen BD. Cancer and cognitive changes: the complexity of the problem. Semin Oncol Nurs. 2013 Nov;29(4):232-7. doi: 10.1016/j.soncn.2013.08.003.

Reference Type BACKGROUND
PMID: 24183154 (View on PubMed)

Von Ah D. Cognitive changes associated with cancer and cancer treatment: state of the science. Clin J Oncol Nurs. 2015 Feb;19(1):47-56. doi: 10.1188/15.CJON.19-01AP.

Reference Type BACKGROUND
PMID: 25689649 (View on PubMed)

Hedayati E, Alinaghizadeh H, Schedin A, Nyman H, Albertsson M. Effects of adjuvant treatment on cognitive function in women with early breast cancer. Eur J Oncol Nurs. 2012 Jul;16(3):315-22. doi: 10.1016/j.ejon.2011.07.006. Epub 2011 Sep 9.

Reference Type BACKGROUND
PMID: 21908235 (View on PubMed)

Quesnel C, Savard J, Ivers H. Cognitive impairments associated with breast cancer treatments: results from a longitudinal study. Breast Cancer Res Treat. 2009 Jul;116(1):113-23. doi: 10.1007/s10549-008-0114-2. Epub 2008 Jul 16.

Reference Type BACKGROUND
PMID: 18629633 (View on PubMed)

Shilling V, Jenkins V, Morris R, Deutsch G, Bloomfield D. The effects of adjuvant chemotherapy on cognition in women with breast cancer--preliminary results of an observational longitudinal study. Breast. 2005 Apr;14(2):142-50. doi: 10.1016/j.breast.2004.10.004.

Reference Type BACKGROUND
PMID: 15767184 (View on PubMed)

Stewart A, Collins B, Mackenzie J, Tomiak E, Verma S, Bielajew C. The cognitive effects of adjuvant chemotherapy in early stage breast cancer: a prospective study. Psychooncology. 2008 Feb;17(2):122-30. doi: 10.1002/pon.1210.

Reference Type BACKGROUND
PMID: 17518411 (View on PubMed)

Tager FA, McKinley PS, Schnabel FR, El-Tamer M, Cheung YK, Fang Y, Golden CR, Frosch ME, Habif U, Mulligan MM, Chen IS, Hershman DL. The cognitive effects of chemotherapy in post-menopausal breast cancer patients: a controlled longitudinal study. Breast Cancer Res Treat. 2010 Aug;123(1):25-34. doi: 10.1007/s10549-009-0606-8. Epub 2009 Nov 6.

Reference Type BACKGROUND
PMID: 19894112 (View on PubMed)

Collins B, Mackenzie J, Stewart A, Bielajew C, Verma S. Cognitive effects of hormonal therapy in early stage breast cancer patients: a prospective study. Psychooncology. 2009 Aug;18(8):811-21. doi: 10.1002/pon.1453.

Reference Type BACKGROUND
PMID: 19085975 (View on PubMed)

Wefel JS, Vidrine DJ, Marani SK, Swartz RJ, Veramonti TL, Meyers CA, Hoekstra HJ, Hoekstra-Weebers JE, Gritz ER. A prospective study of cognitive function in men with non-seminomatous germ cell tumors. Psychooncology. 2014 Jun;23(6):626-33. doi: 10.1002/pon.3453. Epub 2013 Dec 16.

Reference Type BACKGROUND
PMID: 24339329 (View on PubMed)

Cruzado JA, Lopez-Santiago S, Martinez-Marin V, Jose-Moreno G, Custodio AB, Feliu J. Longitudinal study of cognitive dysfunctions induced by adjuvant chemotherapy in colon cancer patients. Support Care Cancer. 2014 Jul;22(7):1815-23. doi: 10.1007/s00520-014-2147-x. Epub 2014 Feb 18.

Reference Type BACKGROUND
PMID: 24535240 (View on PubMed)

Collins B, MacKenzie J, Tasca GA, Scherling C, Smith A. Cognitive effects of chemotherapy in breast cancer patients: a dose-response study. Psychooncology. 2013 Jul;22(7):1517-27. doi: 10.1002/pon.3163. Epub 2012 Aug 30.

Reference Type BACKGROUND
PMID: 22936651 (View on PubMed)

Deprez S, Amant F, Yigit R, Porke K, Verhoeven J, Van den Stock J, Smeets A, Christiaens MR, Leemans A, Van Hecke W, Vandenberghe J, Vandenbulcke M, Sunaert S. Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Hum Brain Mapp. 2011 Mar;32(3):480-93. doi: 10.1002/hbm.21033.

Reference Type BACKGROUND
PMID: 20725909 (View on PubMed)

Ahles TA, Saykin AJ, McDonald BC, Li Y, Furstenberg CT, Hanscom BS, Mulrooney TJ, Schwartz GN, Kaufman PA. Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. J Clin Oncol. 2010 Oct 10;28(29):4434-40. doi: 10.1200/JCO.2009.27.0827. Epub 2010 Sep 13.

Reference Type BACKGROUND
PMID: 20837957 (View on PubMed)

Jenkins V, Thwaites R, Cercignani M, Sacre S, Harrison N, Whiteley-Jones H, Mullen L, Chamberlain G, Davies K, Zammit C, Matthews L, Harder H. A feasibility study exploring the role of pre-operative assessment when examining the mechanism of 'chemo-brain' in breast cancer patients. Springerplus. 2016 Mar 31;5:390. doi: 10.1186/s40064-016-2030-y. eCollection 2016.

Reference Type BACKGROUND
PMID: 27047716 (View on PubMed)

Kreukels BPC, Hamburger HL, de Ruiter MB, van Dam FSAM, Ridderinkhof KR, Boogerd W, Schagen SB. ERP amplitude and latency in breast cancer survivors treated with adjuvant chemotherapy. Clin Neurophysiol. 2008 Mar;119(3):533-541. doi: 10.1016/j.clinph.2007.11.011.

Reference Type BACKGROUND
PMID: 18164658 (View on PubMed)

Luck SJ, Hillyard SA. Electrophysiological correlates of feature analysis during visual search. Psychophysiology. 1994 May;31(3):291-308. doi: 10.1111/j.1469-8986.1994.tb02218.x.

Reference Type BACKGROUND
PMID: 8008793 (View on PubMed)

Vogel EK, Machizawa MG. Neural activity predicts individual differences in visual working memory capacity. Nature. 2004 Apr 15;428(6984):748-51. doi: 10.1038/nature02447.

Reference Type BACKGROUND
PMID: 15085132 (View on PubMed)

Painter DR, Dux PE, Mattingley JB. Distinct roles of the intraparietal sulcus and temporoparietal junction in attentional capture from distractor features: An individual differences approach. Neuropsychologia. 2015 Jul;74:50-62. doi: 10.1016/j.neuropsychologia.2015.02.029. Epub 2015 Feb 24.

Reference Type BACKGROUND
PMID: 25724234 (View on PubMed)

Harris AM, Dux PE, Jones CN, Mattingley JB. Distinct roles of theta and alpha oscillations in the involuntary capture of goal-directed attention. Neuroimage. 2017 May 15;152:171-183. doi: 10.1016/j.neuroimage.2017.03.008. Epub 2017 Mar 6.

Reference Type BACKGROUND
PMID: 28274832 (View on PubMed)

Vogel EK, McCollough AW, Machizawa MG. Neural measures reveal individual differences in controlling access to working memory. Nature. 2005 Nov 24;438(7067):500-3. doi: 10.1038/nature04171.

Reference Type BACKGROUND
PMID: 16306992 (View on PubMed)

Lopez Zunini RA, Scherling C, Wallis N, Collins B, MacKenzie J, Bielajew C, Smith AM. Differences in verbal memory retrieval in breast cancer chemotherapy patients compared to healthy controls: a prospective fMRI study. Brain Imaging Behav. 2013 Dec;7(4):460-77. doi: 10.1007/s11682-012-9213-0.

Reference Type BACKGROUND
PMID: 23242968 (View on PubMed)

Schrepf A, Lutgendorf SK, Pyter LM. Pre-treatment effects of peripheral tumors on brain and behavior: neuroinflammatory mechanisms in humans and rodents. Brain Behav Immun. 2015 Oct;49:1-17. doi: 10.1016/j.bbi.2015.04.010. Epub 2015 May 6.

Reference Type BACKGROUND
PMID: 25958011 (View on PubMed)

Bower JE. Cancer-related fatigue--mechanisms, risk factors, and treatments. Nat Rev Clin Oncol. 2014 Oct;11(10):597-609. doi: 10.1038/nrclinonc.2014.127. Epub 2014 Aug 12.

Reference Type BACKGROUND
PMID: 25113839 (View on PubMed)

Cashdollar N, Fukuda K, Bocklage A, Aurtenetxe S, Vogel EK, Gazzaley A. Prolonged disengagement from attentional capture in normal aging. Psychol Aging. 2013 Mar;28(1):77-86. doi: 10.1037/a0029899. Epub 2012 Oct 15.

Reference Type BACKGROUND
PMID: 23066799 (View on PubMed)

Jost K, Bryck RL, Vogel EK, Mayr U. Are old adults just like low working memory young adults? Filtering efficiency and age differences in visual working memory. Cereb Cortex. 2011 May;21(5):1147-54. doi: 10.1093/cercor/bhq185. Epub 2010 Sep 30.

Reference Type BACKGROUND
PMID: 20884722 (View on PubMed)

Vakoc BJ, Fukumura D, Jain RK, Bouma BE. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nat Rev Cancer. 2012 Apr 5;12(5):363-8. doi: 10.1038/nrc3235.

Reference Type BACKGROUND
PMID: 22475930 (View on PubMed)

Wang XS, Williams LA, Eng C, Mendoza TR, Shah NA, Kirkendoll KJ, Shah PK, Trask PC, Palos GR, Cleeland CS. Validation and application of a module of the M. D. Anderson Symptom Inventory for measuring multiple symptoms in patients with gastrointestinal cancer (the MDASI-GI). Cancer. 2010 Apr 15;116(8):2053-63. doi: 10.1002/cncr.24920.

Reference Type BACKGROUND
PMID: 20166216 (View on PubMed)

Ware J Jr, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996 Mar;34(3):220-33. doi: 10.1097/00005650-199603000-00003.

Reference Type BACKGROUND
PMID: 8628042 (View on PubMed)

Lai JS, Butt Z, Wagner L, Sweet JJ, Beaumont JL, Vardy J, Jacobsen PB, Shapiro PJ, Jacobs SR, Cella D. Evaluating the dimensionality of perceived cognitive function. J Pain Symptom Manage. 2009 Jun;37(6):982-95. doi: 10.1016/j.jpainsymman.2008.07.012.

Reference Type BACKGROUND
PMID: 19500722 (View on PubMed)

Smith S, Jenkinson M, Beckmann C, Miller K, Woolrich M. Meaningful design and contrast estimability in FMRI. Neuroimage. 2007 Jan 1;34(1):127-36. doi: 10.1016/j.neuroimage.2006.09.019. Epub 2006 Oct 27.

Reference Type BACKGROUND
PMID: 17070706 (View on PubMed)

Desmond JE, Glover GH. Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods. 2002 Aug 30;118(2):115-28. doi: 10.1016/s0165-0270(02)00121-8.

Reference Type BACKGROUND
PMID: 12204303 (View on PubMed)

Birn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage. 2013 Dec;83:550-8. doi: 10.1016/j.neuroimage.2013.05.099. Epub 2013 Jun 6.

Reference Type BACKGROUND
PMID: 23747458 (View on PubMed)

Pajula J, Tohka J. How Many Is Enough? Effect of Sample Size in Inter-Subject Correlation Analysis of fMRI. Comput Intell Neurosci. 2016;2016:2094601. doi: 10.1155/2016/2094601. Epub 2016 Jan 13.

Reference Type BACKGROUND
PMID: 26884746 (View on PubMed)

Berger AM, Grem J, Garlinghouse M, Lyden E, Schmid K. Neurocognitive function and quality-of-life in patients with colorectal cancer. Eur J Oncol Nurs. 2023 Jun;64:102304. doi: 10.1016/j.ejon.2023.102304. Epub 2023 Mar 24.

Reference Type DERIVED
PMID: 37137248 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

0228-17-EP

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.