Cervico-vestibular Rehabilitation for Mild Traumatic Brain Injury
NCT ID: NCT03677661
Last Updated: 2022-11-10
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
60 participants
INTERVENTIONAL
2019-04-01
2021-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Vestibular Rehabilitation Exercise in Mild Traumatic Brain Injury
NCT06118541
Effects of Early Vestibular Rehabilitation in Patients With Dizziness and Balance Disorders After Sport Concussion
NCT02945605
Efficacy of Multidimensional Management of Mild Traumatic Brain Injury
NCT03811626
Seeing-Moving-Playing: Early Rehabilitation Utilizing Visual and Vestibular Technology Following Traumatic Brain Injury
NCT03215082
Effects of Vestibular Rehabilitation in the Treatment of Dizziness and Balance Disturbances After Concussion
NCT06700252
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Mild traumatic brain injury (mTBI) is an acknowledged public health problem. It is estimated that between 1.6 to 3.8 million brain injuries occur annually in the United States, with up to 75% classified as mild. The majority of mTBI resolves within 10 to 14 days. However, up to 31% of pediatric cases and 25% of adult cases present post concussive syndrome (PCS), which is a persistence of somatic (for example: headache, neck pain, dizziness, nausea, balance dysfunction), cognitive (for example: memory loss and slowed reaction time), and/or psychological (for example: depression and anxiety) symptoms. Among these symptoms, headache and dizziness are the most commonly reported, followed by nausea and neck pain. Many of these PCS symptoms could be explained by injuries to structures near or in the head, other than the brain itself. For example, following a trauma, structures such as the cervical spine, the vestibular ocular system and the temporomandibular joint can be injured. The energy needed to produce an mTBI can be transferred to the neck and produce an injury mechanism similar to the one observed in whiplash associated disorders (WAD). Neck pain, headaches, dizziness and balance dysfunction are common symptoms associated with both mTBI and WAD. Specific interventions for these injuries are therefore needed when present.
For individuals presenting persistent post-concussion symptoms, the most recent international consensus statement (2017 Berlin consensus on concussion in sport) recommends the addition of an individualized rehabilitation approach to the usual rest and sub-symptoms gradual activation strategies. However, this new recommendation is based on weak evidence as well as expert recommendations. Therefore, the effects of adding individualized rehabilitation interventions for the treatment of potential impairments of body function associated with neck pain, headache and dizziness, needs to be evaluated in individuals with mTBI. The treatment of neck pain, cervicogenic headache, dizziness and balance dysfunction with multimodal rehabilitation interventions or vestibular rehabilitation has been demonstrated effective in several systematic and Cochrane reviews; however none of the randomized control trials (RCT) included in these reviews included individuals with mTBI. Two RCTs have partially looked at the effects of rehabilitation interventions in some subgroups of mTBI patients. One RCT (n=31) has demonstrated that patients with sport-related concussion treated with a standardized combination of vestibular and cervical physiotherapy were quicker to be medically cleared to return to sport than a control group who was resting and gradually returning to activities. However, the intervention used in that study was not individualized to the specific impairments of the participants. Another RCT recruited 41 sport-related concussion patients with dizziness as the main symptom and found that a rehabilitation treatment targeting dizziness was more effective in terms of time to medical clearance than a minimal intervention (subtherapeutic and non-progressive therapeutic techniques). However, as a most likely multifactorial condition, mTBI treatments arguably need to be individualized to the patient's clinical presentation and the outcomes need to encompass all types of symptoms. In that context, there is a need for further RCTs evaluating the effect of a personalized patient-centered rehabilitation approach (based on the Berlin consensus) on mTBI.
Objectives and hypothesis: The primary objective of the current RCT is to compare the addition of a 6-week personalized patient-centered clinical rehabilitation program to a conventional approach in adults with subacute (\> than 3 weeks post TBI) headache, neck pain and /or dizziness-related to mTBI on the severity and impact of symptoms as measured by the Post-Concussion Symptoms Scale (PCSS). The secondary outcomes will be: clearance to return to usual activities, number of recurrence episode, functional level, neck pain, headache and dizziness. Our hypothesis is that the personalized patient-centered clinical rehabilitation program will improve overall symptoms, time to return to activities as well as function faster than the conventional approach and between group differences will be observed at week 6, 12 and 26.
METHODS
Study Design: This single-blind, parallel-group RCT will include 8 supervised treatments during a 6-week rehabilitation program (2 sessions/week the first 2 weeks, then 1 session/week for the last 4 week) and four evaluation sessions over 26 weeks (baseline, week 6 \[immediately after the rehabilitation program\], week 12 \[6 week after the end of the rehabilitation program\] and week 26). All participants will take part in the baseline evaluation. After giving an informed consent, they will first complete a questionnaire on sociodemographic (age, gender, type of sport or physical activities, number of years playing sport and/or other activities), symptomatology (mechanism of injury, history of previous mTBI, history of dizziness, headache, neck pain and unsteadiness) and comorbidity, as well as self-administered questionnaires that evaluate symptoms and functional limitations, including the PCSS (primary outcome). Once baseline data collected, participants will be randomly assigned to the control or intervention group. The control group will receive a the 6-week conventional intervention based on sub-symptoms gradual cardio-vascular exercise program. The experimental group will receive a 6-week personalized patient-centered clinical rehabilitation program in addition to the same intervention as the control group. Between week 6 and week 12, participants will be asked to continue their exercises and follow the advice given at the last meeting with the health professional. Six, 12 and 26 weeks after randomization, all the outcomes will be revaluated. The evaluation sessions will be carried out at the Centre interdisciplinaire de recherche en réadaptation et en intégration sociale (CIRRIS) by a research assistant blinded to group assignment, while the interventions will be given at Clinique Cortex by experienced physiotherapists, neuropsychologists and kinesiologists.
Population: 46 adults presenting to the Clinique Cortex (Concussion clinic) with a diagnosis of mTBI (based on the definition of the Berlin 2016 international consensus statement) and persistent symptoms of dizziness, neck pain and/or headaches (reported on the PCSS)17 lasting for more than 3 weeks will be recruited. The reported symptoms must 1) have started in the first 72 hours following an impact, 2) include one or more cognitive symptom(s), as found in the PCSS).
Sample size calculation is based on changes evidenced by the PCSS for individuals with mTBI. According to sample size calculation (G\*Power 3.1.9.2; α=0.05, effect size=0.8, power \[1-β\]=0.80, Standard Deviation(SD)=20.0 PCSS points, Minimal Detectable Change (MDC)=12.3 PCSS points, 10% attrition), a minimum of 23 patients are needed in each group. Therefore, 46 participants with mTBI will be recruited.
Inclusion and exclusion criteria are described elsewhere in the form.
Randomisation/Blinding: A randomisation list will be generated by an independent research assistant (not involved in data collection) prior to the initiation of the study using a random number generator. Allocation will be concealed in sealed and opaque envelopes that will be sequentially numbered. A blocked randomisation will be used to make sure that two equal groups of 23 participants are obtained. Stratification will be done according to sex to ensure women and men are equally represented in each group as it has been shown that women tend to recover more slowly than man from a mTBI. Given that it is not possible to blind the treating physiotherapist and the participants, a single-blind design will be used as only the evaluator will be blinded. One of the Principal Investigator (PI) will open the randomisation envelope indicating the participant's assignment and will send the information to the treating therapist. The physiotherapists, neuropsychologists and the kinesiologists will be blinded to the baseline evaluation results. To evaluate the effectiveness of blinding, the evaluator will complete a question related to her/his opinion of the allocation. Participants will be unaware of the treatment provided to other participants. Participants will be instructed not to reveal or discuss treatment with the evaluator. To assess blinding effectiveness, the evaluator will answer the following question at the week-6 evaluation: "In your opinion, which intervention this participant received?" The possible answers are: 1) conventional (comparison group); 2) intervention testing the personalized patient-centered clinical rehabilitation program (experimental group); 3) I have no idea.
The outcome measures are well described elsewhere in the form.
Statistical Analyses: Descriptive statistics will be used for all outcome measures at each measurement time to summarize results. Baseline demographic data will be compared (independent t-test and Chi-squared tests) to establish the comparability of groups. All data will be tested to check the distributional assumptions for the inferential statistical analyses. An intention-to-treat analysis will be used in which all participants will be analysed in the group to which they were originally assigned. Per protocol analysis will also be performed. All dropouts and the reason for dropping out of the study will be reported. Any harm or unintended effects during the programs will be recorded. A 2-way ANOVA (2 Groups \[Group 1 or 2\] x 4 Time \[week 0, 6, 12, 26\]) will be used to analyse the effects of the rehabilitation programs on the primary outcome and on most of the secondary outcomes (SPSS 22, proc GENLIN). We expect no group effects, as the groups should be equal at baseline. A time effect should be observed, as both groups should improve given they will both receive an interventions. Finally, we expect a significant Time x Group interaction since the groups should react differently over time, with a faster recovery for the Experimental group seen at week 6 and 12. This will be statistically detailed with post-hoc tests (Bonferroni correction). An independent t-test will be used to analyse the effects of the rehabilitation programs on clearance to return to function.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Conventional approach
Graded aerobic exercise and advice for graded cognitive stimulation approach based on the 2016 Berlin consensus
Conventional approach
The intervention will consist of light cognitive and physical activity with no symptoms exacerbation followed by graded exertion. Participant will be evaluated by a neuropsychologist. The neuropsychological intervention will consist of advice relative to cognitive rest in line with the clinical evaluation results followed by an individualized step-by-step graded exposition to cognitive stimulus according to symptoms evolution. A kinesiologist will also evaluate the symptoms response to cardio-vascular exertion. According to the result of this clinical evaluation, a graded physical exercise program will be given to the participants. 8 in-clinic cardio-vascular exercise sessions in a 6-week period supervised by the kinesiologist (30 to 45 minutes each session) will be provided.
Personalized rehabilitation program
Cervico-vestibular rehabilitation personalized patient-centered clinical program combined with the exercise and advice of the conventional approach
Personalized rehabilitation program
The same advice and exercise program than the active comparator group will be provided. However, 2 physiotherapists will provide 8 treatment session ( 30 to 45 minutes). One physiotherapist will initially evaluate the physical dysfunctions associated to mTBI with a standardized evaluation to build the treatment plan. He will provide cervical manual therapy and therapeutic exercises based on the best current clinical approach and according to the impairment specifically found initially. A vestibular physiotherapist will provide treatment of canalith repositioning manoeuvre, vestibular adaptation, ocular motor exercises, balance and/or habituation exercises. This treatment will be adapted to the individual patient. No more than 8 sessions will be delivered.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Conventional approach
The intervention will consist of light cognitive and physical activity with no symptoms exacerbation followed by graded exertion. Participant will be evaluated by a neuropsychologist. The neuropsychological intervention will consist of advice relative to cognitive rest in line with the clinical evaluation results followed by an individualized step-by-step graded exposition to cognitive stimulus according to symptoms evolution. A kinesiologist will also evaluate the symptoms response to cardio-vascular exertion. According to the result of this clinical evaluation, a graded physical exercise program will be given to the participants. 8 in-clinic cardio-vascular exercise sessions in a 6-week period supervised by the kinesiologist (30 to 45 minutes each session) will be provided.
Personalized rehabilitation program
The same advice and exercise program than the active comparator group will be provided. However, 2 physiotherapists will provide 8 treatment session ( 30 to 45 minutes). One physiotherapist will initially evaluate the physical dysfunctions associated to mTBI with a standardized evaluation to build the treatment plan. He will provide cervical manual therapy and therapeutic exercises based on the best current clinical approach and according to the impairment specifically found initially. A vestibular physiotherapist will provide treatment of canalith repositioning manoeuvre, vestibular adaptation, ocular motor exercises, balance and/or habituation exercises. This treatment will be adapted to the individual patient. No more than 8 sessions will be delivered.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Sustained a mTBI in the past 3 to 12 weeks;
* Having ongoing post-concussion symptoms from the list in the PCSS that started 72 hours or less after an impact;
* Having felt at least one or more cognitive symptoms that started 72 hours or less after an impact;
* Having abnormalities on one of the following test : the cervical physical examination (eg, tenderness/spasm on segmental testing, or reduced motion), the vestibular evaluation (eg, Dix hallpike test, vestibulo-ocular reflex test, or head thrust test) or the ocular motor evaluation (eg, convergence, smooth visual pursuits, or saccades).
Exclusion Criteria
* Patients with more than 24 hours of post-traumatic amnesia;
* Glasgow Coma Scale score lower than 14 at the time of injury;
* Patients with radiographic evidence of subdural hemorrhage, epidural hemorrhage, intraparenchymal hemorrhage, and cerebral or cerebellar contusion;
* Post-injury hospitalization for more than 48 hours;
* Fracture (head, neck and spine);
* Having a neurological condition, other than the actual mTBI;
* Having a cognitive or behavioural impairment with participation in the study;
* Have had general anesthesia during the three-month period prior to the study;
* Having received physiotherapy tretament for the currwnt episode.
18 Years
65 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale
OTHER
Université du Québec à Trois-Rivières
OTHER
Laval University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Pierre Langevin
Professeur de Clinique
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Jean-Sébastien Roy, pht, PhD
Role: STUDY_DIRECTOR
Professor
Pierre Frémont, MD PhD
Role: STUDY_DIRECTOR
Professor
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Clinique Cortex
Québec, Quebec, Canada
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Langevin P, Fremont P, Fait P, Dube MO, Roy JS. Moving from the clinic to telehealth during the COVID-19 pandemic - a pilot clinical trial comparing in-clinic rehabilitation versus telerehabilitation for persisting symptoms following a mild Traumatic brain injury. Disabil Rehabil. 2024 Jun;46(13):2880-2889. doi: 10.1080/09638288.2023.2236016. Epub 2023 Jul 19.
Langevin P, Fait P, Fremont P, Roy JS. Cervicovestibular rehabilitation in adult with mild traumatic brain injury: a randomised controlled trial protocol. BMC Sports Sci Med Rehabil. 2019 Nov 11;11:25. doi: 10.1186/s13102-019-0139-3. eCollection 2019.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Quebec mTBI
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.