Diagnostic Significance of Single Center, Open and Prospective Evaluation of <Sup>18<Sup>F-FDG PET/CT Dynamic Imaging and Genomic Sequencing in Detecting Metastatic Lesions of Primary Hepatocellular Carcinoma

NCT ID: NCT03636607

Last Updated: 2025-03-24

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

WITHDRAWN

Clinical Phase

NA

Study Classification

INTERVENTIONAL

Study Start Date

2018-06-13

Study Completion Date

2025-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The aim of this study is to make up for this gap by performing a dynamic scan of 18F-FDG PET/CT on newly diagnosed patients with liver cancer. The lesions and/or metastases are performed for biopsy. Pathological and genomic studies are performed. The differences between tumor images and tissues are compared at the same time. 18F-FDG PET/CT dynamic imaging is explored in primary liver cancer metastases for the diagnostic value.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Hepatic malignancies have a high incidence rate and can be classified into primary liver cancer and metastatic liver cancer according to their sources. There are three main types of primary liver cancer: hepatocellular carcinoma (HCC), cholangiocellular carcinoma (CCC), and mixed hepatocellular carcinoma (both hepatocytes and cholangiolar cells). In recent years, the incidence and mortality of liver cancer have continued to rise. It has high incidence in Southeast Asia and Africa, and the number of liver cancer patients in China accounts for 55% of the world. However, the onset of liver cancer is occult; the degree of malignancy is high, and the progress rate is fast. Most patients have reached late stage or distant metastases when diagnosed. Imaging examination is an important method for the diagnosis and monitoring of liver cancer. The routine imaging examination mainly observed the morphological characteristics and blood supply changes of the liver lesions. The detection rates of CT and MRI for liver cancer can reach 81-89% and 50-80%, respectively. However, these imaging studies have limitations and are vulnerable to local anatomical locations and cannot be used to assess systemic tumor invasion and biological characteristics. Positron emission tomography (PET) is a molecular-level imaging technique that utilizes relatively specific tracers for qualitative and quantitative imaging. The good spatial and density resolutions of computed tomography (X-ray computed tomography, CT) play an important role in the localization and qualitative diagnosis of HCC. 18F-FDG PET/CT can provide functional imaging from the point of view of molecular biology. It not only can understand the tumor invasion of the whole body, but also has become an important means for qualitative diagnosis, staging, prognosis and therapeutic evaluation of tumors.

As a new imaging technology, 18F-FDG PET/CT plays an increasingly important role in the diagnosis of primary liver cancer. 18F-FDG PET/CT reflects the glycometabolism of tumor tissues. The diagnosis of benign and malignant tumors is based on the difference in glucose metabolism between tumor cells and normal tissues. 18F-FDG is an isomer of glucose and is involved in the glucose metabolism process. Since it is deoxygenated, it cannot generate diphosphate hexose, and it cannot participate in the next step of metabolism but remains in the cell. In the tumor cells, due to the high expression of glucose transporter mRNA, the glucose transporters Glut-1 and Glut-3 levels are increased; the expression of hexokinase is increased; the level of glucose-6-phosphatase is down-regulated and other common factors make the tumor cells' 18F-FDG uptake increased.

Previous researchers have found 18F-FDG PET/CT unsatisfactory in the diagnosis of HCC, especially for the diagnosis of HCC with well-differentiated tissue. The researchers also indicates that 18F-FDG PET/CT is not superior to traditional MRI and CT in the diagnosis of liver cancer. Combined with the current relevant research, it can be roughly stated that the positive rate of liver cancer using 18F-FDG PET/CT in diagnosing different grades of tissue differentiation is only about 50-70%. There appears to be a high uptake of FDG in poorly differentiated HCC. However, there is no such obvious phenomenon in HCC with medium or well-differentiated tissue. The PET/CT scans reported in all these documents are based on conventional static scans, i.e. the image data is based on a static take-up image of the tracer in tissue obtained at a fixed time point after the injection of 18F-FDG. To improve, the investigators propose to use dynamic data scanning, which captures the dynamic data of whole body tissues collected from the moment of injecting 18F-FDG to an hour. Dynamic scans can provide information on the dynamic changes in tracer metabolism and distribution in tissues over time, so they provide a richer metabolic and distributional pattern of tumor foci and metastases than static scans. However, the current domestic and international research on 18F-FDG PET/CT dynamic scan in the metastasis of hepatocellular carcinoma is very rare. Therefore, the aim of this study is to make up for this gap by performing a dynamic scan of 18F-FDG PET/CT on newly diagnosed patients with liver cancer. The lesions and/or metastases are performed for biopsy. Pathological and genomic studies are performed. The differences between tumor images and tissues are compared at the same time. 18F-FDG PET/CT dynamic imaging is explored in primary liver cancer metastases for the diagnostic value.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Positron-Emission Tomography Carcinoma, Hepatocellular

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

DIAGNOSTIC

Blinding Strategy

SINGLE

Investigators

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Non-metastatic group

PET/CT dynamic scan,needle biopsy and gene detection

Group Type EXPERIMENTAL

PET/CT dynamic scan

Intervention Type DIAGNOSTIC_TEST

The purpose of this study is to carry out 18F-FDG PET/CT dynamic scans and biopsy of primary or primary and metastatic lesions in newly diagnosed patients with primary liver cancer, and to compare imaging findings, genomics, and pathology at the same time. The intrinsic relationship between tissue characteristics and the diagnostic value of 18F-FDG PET/CT dynamic imaging in primary liver cancer metastases are discussed.

Metastatic group

PET/CT dynamic scan,needle biopsy and gene detection

Group Type EXPERIMENTAL

PET/CT dynamic scan

Intervention Type DIAGNOSTIC_TEST

The purpose of this study is to carry out 18F-FDG PET/CT dynamic scans and biopsy of primary or primary and metastatic lesions in newly diagnosed patients with primary liver cancer, and to compare imaging findings, genomics, and pathology at the same time. The intrinsic relationship between tissue characteristics and the diagnostic value of 18F-FDG PET/CT dynamic imaging in primary liver cancer metastases are discussed.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

PET/CT dynamic scan

The purpose of this study is to carry out 18F-FDG PET/CT dynamic scans and biopsy of primary or primary and metastatic lesions in newly diagnosed patients with primary liver cancer, and to compare imaging findings, genomics, and pathology at the same time. The intrinsic relationship between tissue characteristics and the diagnostic value of 18F-FDG PET/CT dynamic imaging in primary liver cancer metastases are discussed.

Intervention Type DIAGNOSTIC_TEST

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Needle biopasy Geen detection

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Accurately diagnosing primary liver cancer according to pathological diagnostic criteria or clinical diagnostic criteria.
* Tumor volume (\> 1 cm) displayed by enhanced CT or MRI or liver mass confirmed by arteriography .
* For patients considering distant metastases, trunk metastases need to be confirmed by CT examination. Bone metastases need to be confirmed by whole-body bone scan. Brain metastases need to be confirmed with characteristic metastatic tumors by MRI.
* The age is more than 18 years old and less than 65 years old. There is no gender restriction.
* Untreated patients who have not received surgery, interventional therapy, chemotherapy, biotherapy, and radiation therapy.
* Physical condition score ECOG: 0-2; no major organ dysfunction; oxygen partial pressure ≥ 10.64kPa; white blood cell count≥ 4 × 109/L; hemoglobin ≥ 9.5g/dL; neutrophil absolute count ≥ 1.5 × 109 / L; platelet count ≥ 100 × 109 / L; total bilirubin ≤ 1.5 times of the upper limit of normal value; creatinine ≤ 1.25 times of the upper limit of normal value; and creatinine clearance ≥ 60ml / min.
* Be able to obtain complete follow-up information, understand the situation of this study and sign informed consent.

Exclusion Criteria

* Poorly controlled diabetics (fasting blood glucose levels \> 200 mg/dL).
* In addition to four types of malignant tumors that can be treated with radical resection, such as cervical cancer in situ, basal or squamous cell skin cancer, (breast) ductal carcinoma in situ, and organ localized prostate cancer, suffering from any other malignant tumors within 5 years.
* Breastfeeding and/or pregnant women.
* Patients with severe bleeding tendencies (prothrombin time less than 50%, cannot be corrected by treatment with vitamin K, etc.).
* Recent severe hemoptysis, severe cough, dyspnea or patients are not able to cooperate.
* People with severe emphysema, pulmonary congestion, and pulmonary heart disease.
* Researchers believe that the subject may not be able to complete this study or may not be able to comply with the requirements of this study (for management reasons or other reasons).
Minimum Eligible Age

18 Years

Maximum Eligible Age

65 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Fifth Affiliated Hospital, Sun Yat-Sen University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Hongjun Jin

Principal Investigator

Responsibility Role PRINCIPAL_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Hongjun Jin

Zhuhai, Guangzhou, China

Site Status

Countries

Review the countries where the study has at least one active or historical site.

China

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

ZDWY.FZYX.001

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

68Ga-ICAM-1pep PET/CT in Cancer Patients
NCT04596670 RECRUITING EARLY_PHASE1