Impact of Wolbachia Deployment on Arboviral Disease Incidence in Medellin and Bello, Colombia
NCT ID: NCT03631719
Last Updated: 2022-04-08
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
834 participants
OBSERVATIONAL
2017-10-25
2021-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Study design:
1. An interrupted time-series analysis utilising routine disease surveillance data collected by the Medellín and Bello Health Secretariats, which aims to compare incidence of dengue, chikungunya and Zika pre- and post-Wolbachia release.
2. A test-negative study using an incident case-control design, which aims to quantify the reduction in disease incidence among people living within a Wolbachia-treated zone compared with an untreated zone that has a similar dengue risk profile at baseline.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Applying Wolbachia to Eliminate Dengue
NCT03055585
Sustainable Reduction of Dengue in Colombia: Vector Breeding Site Intervention With an Insecticidal Coating
NCT06268691
Genetic Evolution of Arboviruses in New Caledonia Between 1995 and 2024 and Impact of Wolbachia
NCT04615364
Impact of Project Wolbachia - Singapore on Dengue Incidence
NCT05505682
Human Epidemiology of Newly Identified Arboviruses
NCT04954352
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
* Recruitment procedures: All eligible participants meeting study inclusion criteria will be invited to enroll continuously throughout the study period. Recruitment will occur during normal clinic hours. Participants will be managed according to standard clinical practice by the attending physicians. Recruitment rates in each clinic and across the study site as a whole will be monitored weekly, including a review of the screening logs to identify the proportion of eligible participants who did not consent to participate. The field coordinator will make regular visits to low-enrolling clinics to identify clinic-based, patient-based or other causes for low recruitment, and put measures in place to address these.
* Screening: All patients presenting with febrile illness will be screened against the study inclusion criteria by trained staff. All eligible febrile individuals will be recorded in a screening log and invited to participate. Participation status (consent/decline) will be recorded against each participant in the log.
* Informed consent: Written informed consent will be sought from participants (or their guardian where the participant is a minor) by trained local staff, after explaining the study objectives, processes, data, and sample collection, and the participant has had an opportunity to ask questions. A verbal explanation of the written Explanatory Statement will be provided to all participants in the local language. In addition, participants aged between 7 and 17 years will be invited to sign an assent form indicating they understand the research and agree to participate. Data and sample collection procedures
* Data collection: A unique identifier will be assigned to each participant at enrollment. Basic demographic details, eligibility against the inclusion criteria and illness onset date will be recorded in a standardized case report form.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CONTROL
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Early-release
Resident in areas that receive early Wolbachia deployments.
Wolbachia-carrying Ae.aegypti mosquitoes
Wolbachia-infected Ae. aegypti mosquito eggs and adults sequentially deployed into Medellin and Bello, Colombia. Deployments cease once Wolbachia prevalence has reached a predetermined frequency (usually ≥60%).
Late-release
Resident in areas that receive late Wolbachia deployments.
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Wolbachia-carrying Ae.aegypti mosquitoes
Wolbachia-infected Ae. aegypti mosquito eggs and adults sequentially deployed into Medellin and Bello, Colombia. Deployments cease once Wolbachia prevalence has reached a predetermined frequency (usually ≥60%).
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Aged ≥3 years old.
* Lived (i.e. slept) in the study area every night (or day) for the 10 days preceding illness onset.
Exclusion Criteria
* Prior enrollment in the study within the previous 4 weeks.
3 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Monash University
OTHER
United States Agency for International Development (USAID)
FED
Bill and Melinda Gates Foundation
OTHER
Wellcome Trust
OTHER
Universidad de Antioquia
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Cameron Simmons, Prof.
Role: STUDY_DIRECTOR
Monash University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Universidad de Antioquia
Medellín, Antioquia, Colombia
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis. 2012;6(8):e1760. doi: 10.1371/journal.pntd.0001760. Epub 2012 Aug 7.
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. The global distribution and burden of dengue. Nature. 2013 Apr 25;496(7446):504-7. doi: 10.1038/nature12060. Epub 2013 Apr 7.
Shepard DS, Coudeville L, Halasa YA, Zambrano B, Dayan GH. Economic impact of dengue illness in the Americas. Am J Trop Med Hyg. 2011 Feb;84(2):200-7. doi: 10.4269/ajtmh.2011.10-0503.
Shepard DS, Undurraga EA, Halasa YA. Economic and disease burden of dengue in Southeast Asia. PLoS Negl Trop Dis. 2013;7(2):e2055. doi: 10.1371/journal.pntd.0002055. Epub 2013 Feb 21.
Shepard DS, Suaya JA, Halstead SB, Nathan MB, Gubler DJ, Mahoney RT, Wang DN, Meltzer MI. Cost-effectiveness of a pediatric dengue vaccine. Vaccine. 2004 Mar 12;22(9-10):1275-80. doi: 10.1016/j.vaccine.2003.09.019.
Dengue Vaccine Initiative. Dengue vaccine candidates in clinical development. (2016). Available at: http://www.denguevaccines.org/vaccine-development. (Accessed: 13th June 2016)
L'Azou M, Moureau A, Sarti E, Nealon J, Zambrano B, Wartel TA, Villar L, Capeding MR, Ochiai RL; CYD14 Primary Study Group; CYD15 Primary Study Group. Symptomatic Dengue in Children in 10 Asian and Latin American Countries. N Engl J Med. 2016 Mar 24;374(12):1155-66. doi: 10.1056/NEJMoa1503877.
Capeding MR, Tran NH, Hadinegoro SR, Ismail HI, Chotpitayasunondh T, Chua MN, Luong CQ, Rusmil K, Wirawan DN, Nallusamy R, Pitisuttithum P, Thisyakorn U, Yoon IK, van der Vliet D, Langevin E, Laot T, Hutagalung Y, Frago C, Boaz M, Wartel TA, Tornieporth NG, Saville M, Bouckenooghe A; CYD14 Study Group. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet. 2014 Oct 11;384(9951):1358-65. doi: 10.1016/S0140-6736(14)61060-6. Epub 2014 Jul 10.
Villar L, Dayan GH, Arredondo-Garcia JL, Rivera DM, Cunha R, Deseda C, Reynales H, Costa MS, Morales-Ramirez JO, Carrasquilla G, Rey LC, Dietze R, Luz K, Rivas E, Miranda Montoya MC, Cortes Supelano M, Zambrano B, Langevin E, Boaz M, Tornieporth N, Saville M, Noriega F; CYD15 Study Group. Efficacy of a tetravalent dengue vaccine in children in Latin America. N Engl J Med. 2015 Jan 8;372(2):113-23. doi: 10.1056/NEJMoa1411037. Epub 2014 Nov 3.
Guy B, Lang J, Saville M, Jackson N. Vaccination Against Dengue: Challenges and Current Developments. Annu Rev Med. 2016;67:387-404. doi: 10.1146/annurev-med-091014-090848. Epub 2015 Oct 23.
Hadinegoro SR, Arredondo-Garcia JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, Muhammad Ismail HI, Reynales H, Limkittikul K, Rivera-Medina DM, Tran HN, Bouckenooghe A, Chansinghakul D, Cortes M, Fanouillere K, Forrat R, Frago C, Gailhardou S, Jackson N, Noriega F, Plennevaux E, Wartel TA, Zambrano B, Saville M; CYD-TDV Dengue Vaccine Working Group. Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease. N Engl J Med. 2015 Sep 24;373(13):1195-206. doi: 10.1056/NEJMoa1506223. Epub 2015 Jul 27.
Schilte C, Staikowsky F, Couderc T, Madec Y, Carpentier F, Kassab S, Albert ML, Lecuit M, Michault A. Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. PLoS Negl Trop Dis. 2013;7(3):e2137. doi: 10.1371/journal.pntd.0002137. Epub 2013 Mar 21.
Rolph MS, Foo SS, Mahalingam S. Emergent chikungunya virus and arthritis in the Americas. Lancet Infect Dis. 2015 Sep;15(9):1007-1008. doi: 10.1016/S1473-3099(15)00231-5. No abstract available.
Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, Shi PY, Vasilakis N. Zika virus: History, emergence, biology, and prospects for control. Antiviral Res. 2016 Jun;130:69-80. doi: 10.1016/j.antiviral.2016.03.010. Epub 2016 Mar 18.
World Health Organization. WHO Director-General summarizes the outcome of the Emergency Committee regarding clusters of microcephaly and Guillain-Barré syndrome. 2016. Available at. see World Health Organization. Zika virus: Fact sheet. 2016.
World Health Organization. Mosquito (vector) control emergency response and preparedness for Zika virus. (2016). Available at: http://www.who.int/neglected_diseases/news/mosquito_vector_control_response/en/. (Accessed: 18th March 2016)
Republic of Colombia, B. of the R. (Bogotá). D. of E. R. Colombia: Overview of its economic structure. (Printing of the Bank of the Republic, 1992).
Republic of Colombia, N. C. for E. and S. P. Guidelines for the formulation of integral environmental health policy with emphasis on the components of air quality, water quality and chemical safety. (2008).
Medina ÁM. El Dengue en Colombia. Epidemiología de la Reemergencia a la Hiperendemia. Medicina. 2013 Mar 5;35(1):75-6.n Ltda. Bogotá).
National Institute of Health. Epidemiological bulletin: week 52/2016. (2016).
Bowman LR, Donegan S, McCall PJ. Is Dengue Vector Control Deficient in Effectiveness or Evidence?: Systematic Review and Meta-analysis. PLoS Negl Trop Dis. 2016 Mar 17;10(3):e0004551. doi: 10.1371/journal.pntd.0004551. eCollection 2016 Mar.
Andersson N, Nava-Aguilera E, Arostegui J, Morales-Perez A, Suazo-Laguna H, Legorreta-Soberanis J, Hernandez-Alvarez C, Fernandez-Salas I, Paredes-Solis S, Balmaseda A, Cortes-Guzman AJ, Serrano de Los Santos R, Coloma J, Ledogar RJ, Harris E. Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial. BMJ. 2015 Jul 8;351:h3267. doi: 10.1136/bmj.h3267.
Degener CM, Eiras AE, Azara TM, Roque RA, Rosner S, Codeco CT, Nobre AA, Rocha ES, Kroon EG, Ohly JJ, Geier M. Evaluation of the effectiveness of mass trapping with BG-sentinel traps for dengue vector control: a cluster randomized controlled trial in Manaus, Brazil. J Med Entomol. 2014 Mar;51(2):408-20. doi: 10.1603/me13107.
Wilson AL, Boelaert M, Kleinschmidt I, Pinder M, Scott TW, Tusting LS, Lindsay SW. Evidence-based vector control? Improving the quality of vector control trials. Trends Parasitol. 2015 Aug;31(8):380-90. doi: 10.1016/j.pt.2015.04.015. Epub 2015 May 19.
O'Neill SL, Pettigrew MM, Sinkins SP, Braig HR, Andreadis TG, Tesh RB. In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Mol Biol. 1997 Feb;6(1):33-9. doi: 10.1046/j.1365-2583.1997.00157.x.
Stouthamer R, Breeuwer JA, Hurst GD. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol. 1999;53:71-102. doi: 10.1146/annurev.micro.53.1.71.
Rousset F, Vautrin D, Solignac M. Molecular identification of Wolbachia, the agent of cytoplasmic incompatibility in Drosophila simulans, and variability in relation with host mitochondrial types. Proc Biol Sci. 1992 Mar 23;247(1320):163-8. doi: 10.1098/rspb.1992.0023.
Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. How many species are infected with Wolbachia?--A statistical analysis of current data. FEMS Microbiol Lett. 2008 Apr;281(2):215-20. doi: 10.1111/j.1574-6968.2008.01110.x. Epub 2008 Feb 28.
McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang YF, O'Neill SL. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009 Jan 2;323(5910):141-4. doi: 10.1126/science.1165326.
Joubert DA, Walker T, Carrington LB, De Bruyne JT, Kien DH, Hoang Nle T, Chau NV, Iturbe-Ormaetxe I, Simmons CP, O'Neill SL. Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management. PLoS Pathog. 2016 Feb 18;12(2):e1005434. doi: 10.1371/journal.ppat.1005434. eCollection 2016 Feb.
Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann AA. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 2011 Aug 24;476(7361):450-3. doi: 10.1038/nature10355.
Dutra HL, Rocha MN, Dias FB, Mansur SB, Caragata EP, Moreira LA. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes. Cell Host Microbe. 2016 Jun 8;19(6):771-4. doi: 10.1016/j.chom.2016.04.021. Epub 2016 May 4.
Johnson KN. The Impact of Wolbachia on Virus Infection in Mosquitoes. Viruses. 2015 Nov 4;7(11):5705-17. doi: 10.3390/v7112903.
Rainey SM, Shah P, Kohl A, Dietrich I. Understanding the Wolbachia-mediated inhibition of arboviruses in mosquitoes: progress and challenges. J Gen Virol. 2014 Mar;95(Pt 3):517-530. doi: 10.1099/vir.0.057422-0. Epub 2013 Dec 16.
Amuzu HE, Simmons CP, McGraw EA. Effect of repeat human blood feeding on Wolbachia density and dengue virus infection in Aedes aegypti. Parasit Vectors. 2015 Apr 24;8:246. doi: 10.1186/s13071-015-0853-y.
Ye YH, Carrasco AM, Frentiu FD, Chenoweth SF, Beebe NW, van den Hurk AF, Simmons CP, O'Neill SL, McGraw EA. Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti. PLoS Negl Trop Dis. 2015 Jun 26;9(6):e0003894. doi: 10.1371/journal.pntd.0003894. eCollection 2015.
Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, van den Hurk A, McGraw EA, O'Neill SL. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl Trop Dis. 2014 Feb 20;8(2):e2688. doi: 10.1371/journal.pntd.0002688. eCollection 2014 Feb.
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009 Dec 24;139(7):1268-78. doi: 10.1016/j.cell.2009.11.042.
Ferguson NM, Kien DT, Clapham H, Aguas R, Trung VT, Chau TN, Popovici J, Ryan PA, O'Neill SL, McGraw EA, Long VT, Dui le T, Nguyen HL, Chau NV, Wills B, Simmons CP. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci Transl Med. 2015 Mar 18;7(279):279ra37. doi: 10.1126/scitranslmed.3010370.
Lessler J, Salje H, Grabowski MK, Cummings DA. Measuring Spatial Dependence for Infectious Disease Epidemiology. PLoS One. 2016 May 19;11(5):e0155249. doi: 10.1371/journal.pone.0155249. eCollection 2016.
Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. Geneva: World Health Organization; 2009. Available from http://www.ncbi.nlm.nih.gov/books/NBK143157/
Velez ID, Tanamas SK, Arbelaez MP, Kutcher SC, Duque SL, Uribe A, Zuluaga L, Martinez L, Patino AC, Barajas J, Munoz E, Mejia Torres MC, Uribe S, Porras S, Almanza R, Pulido H, O'Neill SL, Santacruz-Sanmartin E, Gonzalez S, Ryan PA, Denton JA, Jewell NP, Dufault SM, Simmons CP, Anders KL. Reduced dengue incidence following city-wide wMel Wolbachia mosquito releases throughout three Colombian cities: Interrupted time series analysis and a prospective case-control study. PLoS Negl Trop Dis. 2023 Nov 30;17(11):e0011713. doi: 10.1371/journal.pntd.0011713. eCollection 2023 Nov.
Velez ID, Santacruz E, Kutcher SC, Duque SL, Uribe A, Barajas J, Gonzalez S, Patino AC, Zuluaga L, Martinez L, Munoz E, Mejia MC, Arbelaez MP, Pulido H, Jewell NP, Dufault SM, O'Neill SL, Simmons CP, Anders KL, Tanamas SK. The impact of city-wide deployment of Wolbachia-carrying mosquitoes on arboviral disease incidence in Medellin and Bello, Colombia: study protocol for an interrupted time-series analysis and a test-negative design study. F1000Res. 2019 Aug 1;8:1327. doi: 10.12688/f1000research.19858.2. eCollection 2019.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Statistical Analysis Plan
Related Links
Access external resources that provide additional context or updates about the study.
PECET Web Page
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
PECET-002
Identifier Type: REGISTRY
Identifier Source: secondary_id
PEC004_18
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.