LEAP a New Overground Body Weight Support Robot: Usability Trial
NCT ID: NCT03458169
Last Updated: 2019-01-30
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
43 participants
INTERVENTIONAL
2018-01-01
2018-04-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The scope of this study is to examine how well the robot can be used for rehabilitation therapy in everyday clinical practice. This includes, among other things, technical aspects such as the handling of the hardware, the adaptability of the robot to the patient, and the safety during operation (such as the fall prevention). Various patient-specific aspects will also be evaluated e.g. comfort, positioning, or motivation of the patient. This study also aims to evaluate the software with the various support modes, operating options, and the user interface of the LEAP.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Upper Limb Activity in Human SCI Rehabilitation
NCT02098122
Effectiveness of Robot-assisted Upper-limb Exercise in Cervical SCI
NCT06089915
Shoulder Health After Rehabilitation and Performance Training
NCT07245706
Atalante Exoskeleton in the Rehabilitation of Patients With Amyotrophic Lateral Sclerosis
NCT06199284
Spinal Cord Injury Leg Rehabilitation
NCT01498991
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
OTHER
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
LEAP usability
* Therapist LEAP session feedback
* Participant LEAP session feedback
* LEAP risk control validation
Therapist LEAP session feedback
A standard therapy session is being performed with a participant with the LEAP body-weight support robot. Subsequently, the therapist is answering a questionnaire to assess the clinical applicability of the robot. An observer will assess with a questionnaire whether use errors occurred during the session.
Participant LEAP session feedback
A standard therapy session is being performed with a participant inside the LEAP body-weight support robot. Subsequently, the participant is answering a questionnaire to assess the comfort of the robot.
LEAP risk control validation
The therapist rates the risk control measurements of the LEAP robot with a questionnaire, during a session with a member of the investigational team.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Therapist LEAP session feedback
A standard therapy session is being performed with a participant with the LEAP body-weight support robot. Subsequently, the therapist is answering a questionnaire to assess the clinical applicability of the robot. An observer will assess with a questionnaire whether use errors occurred during the session.
Participant LEAP session feedback
A standard therapy session is being performed with a participant inside the LEAP body-weight support robot. Subsequently, the participant is answering a questionnaire to assess the comfort of the robot.
LEAP risk control validation
The therapist rates the risk control measurements of the LEAP robot with a questionnaire, during a session with a member of the investigational team.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age 18-80 or age 5-10 (women or men)
* Weight below 137 kg
* Height between 120 and 190 cm
* Agree to comply in good faith with all conditions of the study and to attend all required training
* The patient has been informed and has signed the informed consent form
* Age 18-80 (women or men)
* Weight below 137 kg
* Height between 120 and 190 cm
* Neurological/musculoskeletal diagnoses
* Impairment of the lower extremities
* Stable medical and physical condition as considered by the attending doctor or physician
* Agree to comply in good faith with all conditions of the study and to attend all required training
* Other (non-neurological) diagnoses, who require intense training of the lower extremities
* The rehabilitation physician or doctor provides a final agreement whether the participant can train with the LEAP
Exclusion Criteria
* Bracing of the spinal column.
* Severe joint contractures disabling or restricting lower limb movements
* Instabilities of bones or joints, fractures or osteoporosis/osteopenia
* Allergy against material of harness
* Open skin lesions
* Luxations or subluxations of joints that should be positioned in LEAP
* Strong pain
* Strong spontaneous movements like ataxia, dyskinesia, myoclonus\*
* Instable vital functions like pulmonal or cardiovascular conditions
* Uncooperative or aggressive behaviour
* Severe cognitive deficits
* Inability to signal pain or discomfort
* Apraxia\*
* Severe spasticity (Ashworth 4)
* Severe epilepsy\*
* Insufficient head stability
* Infections requiring isolation of the patient
* History of significant autonomic dysreflexia
* Systemic malignant disorders
* Cardiovascular disorders restricting physical training
* Peripheral nerve disorders
* Other anatomic or co-morbid conditions that, in the investigator's opinion, could limit the patient's ability to participate in the study or to comply with follow-up requirements, or impact the scientific soundness of the study results.
* Known or suspected non-compliance, drug or alcohol abuse,
* Inability to follow the procedures of the study, e.g. due to language problems, psychological disorders, dementia, etc. of the participant,
* Participation in another study with investigational drug within the 30 days preceding and during the present study
* Previous enrolment into the current study Contraindications marked with an \* are relative contraindications. Final approval needs to be obtained from the attending medical doctor.
5 Years
80 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Clinique Romande de Readaptation
NETWORK
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Urs Keller, PhD
Role: PRINCIPAL_INVESTIGATOR
Ecole Polytechnique Fédérale de Lausanne
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Clinique Romande de Réadaptation (CRR), SUVAcare
Sion, Valais, Switzerland
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Freund P, Weiskopf N, Ward NS, Hutton C, Gall A, Ciccarelli O, Craggs M, Friston K, Thompson AJ. Disability, atrophy and cortical reorganization following spinal cord injury. Brain. 2011 Jun;134(Pt 6):1610-22. doi: 10.1093/brain/awr093. Epub 2011 May 17.
Kennedy P, Rogers BA. Anxiety and depression after spinal cord injury: a longitudinal analysis. Arch Phys Med Rehabil. 2000 Jul;81(7):932-7. doi: 10.1053/apmr.2000.5580.
Fehr L, Langbein WE, Skaar SB. Adequacy of power wheelchair control interfaces for persons with severe disabilities: a clinical survey. J Rehabil Res Dev. 2000 May-Jun;37(3):353-60.
Hunt PC, Boninger ML, Cooper RA, Zafonte RD, Fitzgerald SG, Schmeler MR. Demographic and socioeconomic factors associated with disparity in wheelchair customizability among people with traumatic spinal cord injury. Arch Phys Med Rehabil. 2004 Nov;85(11):1859-64. doi: 10.1016/j.apmr.2004.07.347.
Meyns P, Van de Crommert HW, Rijken H, van Kuppevelt DH, Duysens J. Locomotor training with body weight support in SCI: EMG improvement is more optimally expressed at a low testing speed. Spinal Cord. 2014 Dec;52(12):887-93. doi: 10.1038/sc.2014.172. Epub 2014 Oct 14.
Crompton S, Khemlani M, Batty J, Ada L, Dean C, Katrak P. Practical issues in retraining walking in severely disabled patients using treadmill and harness support systems. Aust J Physiother. 2001;47(3):211-3. doi: 10.1016/s0004-9514(14)60268-3. No abstract available.
Wessels M, Lucas C, Eriks I, de Groot S. Body weight-supported gait training for restoration of walking in people with an incomplete spinal cord injury: a systematic review. J Rehabil Med. 2010 Jun;42(6):513-9. doi: 10.2340/16501977-0525.
Dobkin B, Barbeau H, Deforge D, Ditunno J, Elashoff R, Apple D, Basso M, Behrman A, Harkema S, Saulino M, Scott M; Spinal Cord Injury Locomotor Trial Group. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial. Neurorehabil Neural Repair. 2007 Jan-Feb;21(1):25-35. doi: 10.1177/1545968306295556.
Franceschini M, Carda S, Agosti M, Antenucci R, Malgrati D, Cisari C; Gruppo Italiano Studio Allevio Carico Ictus. Walking after stroke: what does treadmill training with body weight support add to overground gait training in patients early after stroke?: a single-blind, randomized, controlled trial. Stroke. 2009 Sep;40(9):3079-85. doi: 10.1161/STROKEAHA.109.555540. Epub 2009 Jun 25.
Hoyer E, Jahnsen R, Stanghelle JK, Strand LI. Body weight supported treadmill training versus traditional training in patients dependent on walking assistance after stroke: a randomized controlled trial. Disabil Rehabil. 2012;34(3):210-9. doi: 10.3109/09638288.2011.593681.
Ada L, Dean CM, Hall JM, Bampton J, Crompton S. A treadmill and overground walking program improves walking in persons residing in the community after stroke: a placebo-controlled, randomized trial. Arch Phys Med Rehabil. 2003 Oct;84(10):1486-91. doi: 10.1016/s0003-9993(03)00349-6.
Kosak MC, Reding MJ. Comparison of partial body weight-supported treadmill gait training versus aggressive bracing assisted walking post stroke. Neurorehabil Neural Repair. 2000;14(1):13-9. doi: 10.1177/154596830001400102.
Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke. 1998 Jun;29(6):1122-8. doi: 10.1161/01.str.29.6.1122.
Teixeira da Cunha Filho I, Lim PA, Qureshy H, Henson H, Monga T, Protas EJ. A comparison of regular rehabilitation and regular rehabilitation with supported treadmill ambulation training for acute stroke patients. J Rehabil Res Dev. 2001 Mar-Apr;38(2):245-55.
Werner C, Von Frankenberg S, Treig T, Konrad M, Hesse S. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke. 2002 Dec;33(12):2895-901. doi: 10.1161/01.str.0000035734.61539.f6.
Nilsson L, Carlsson J, Danielsson A, Fugl-Meyer A, Hellstrom K, Kristensen L, Sjolund B, Sunnerhagen KS, Grimby G. Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil. 2001 Oct;15(5):515-27. doi: 10.1191/026921501680425234.
Sullivan KJ, Brown DA, Klassen T, Mulroy S, Ge T, Azen SP, Winstein CJ; Physical Therapy Clinical Research Network (PTClinResNet). Effects of task-specific locomotor and strength training in adults who were ambulatory after stroke: results of the STEPS randomized clinical trial. Phys Ther. 2007 Dec;87(12):1580-602. doi: 10.2522/ptj.20060310. Epub 2007 Sep 25.
Mackay-Lyons M, McDonald A, Matheson J, Eskes G, Klus MA. Dual effects of body-weight supported treadmill training on cardiovascular fitness and walking ability early after stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2013 Sep;27(7):644-53. doi: 10.1177/1545968313484809. Epub 2013 Apr 18.
Combs-Miller SA, Kalpathi Parameswaran A, Colburn D, Ertel T, Harmeyer A, Tucker L, Schmid AA. Body weight-supported treadmill training vs. overground walking training for persons with chronic stroke: a pilot randomized controlled trial. Clin Rehabil. 2014 Sep;28(9):873-84. doi: 10.1177/0269215514520773. Epub 2014 Feb 11.
Combs SA, Dugan EL, Ozimek EN, Curtis AB. Effects of body-weight supported treadmill training on kinetic symmetry in persons with chronic stroke. Clin Biomech (Bristol). 2012 Nov;27(9):887-92. doi: 10.1016/j.clinbiomech.2012.06.011. Epub 2012 Jul 17.
Burgess JK, Weibel GC, Brown DA. Overground walking speed changes when subjected to body weight support conditions for nonimpaired and post stroke individuals. J Neuroeng Rehabil. 2010 Feb 11;7:6. doi: 10.1186/1743-0003-7-6.
Lamontagne A, Fung J. Faster is better: implications for speed-intensive gait training after stroke. Stroke. 2004 Nov;35(11):2543-8. doi: 10.1161/01.STR.0000144685.88760.d7. Epub 2004 Oct 7.
Sousa CO, Barela JA, Prado-Medeiros CL, Salvini TF, Barela AM. The use of body weight support on ground level: an alternative strategy for gait training of individuals with stroke. J Neuroeng Rehabil. 2009 Dec 1;6:43. doi: 10.1186/1743-0003-6-43.
Swinnen E, Baeyens JP, Pintens S, Van Nieuwenhoven J, Ilsbroukx S, Clijsen R, Buyl R, Goossens M, Meeusen R, Kerckhofs E. Trunk muscle activity during walking in persons with multiple sclerosis: the influence of body weight support. NeuroRehabilitation. 2014;34(2):323-35. doi: 10.3233/NRE-131044.
Pennycott A, Vallery H, Wyss D, Spindler M, Dewarrat A, Riener R. A novel body weight support system extension: initial concept and simulation study. IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650489. doi: 10.1109/ICORR.2013.6650489.
Winter DA, MacKinnon CD, Ruder GK, Wieman C. An integrated EMG/biomechanical model of upper body balance and posture during human gait. Prog Brain Res. 1993;97:359-67. doi: 10.1016/s0079-6123(08)62295-5.
van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider I, Moraud EM, Duis S, Dominici N, Micera S, Musienko P, Courtine G. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science. 2012 Jun 1;336(6085):1182-5. doi: 10.1126/science.1217416.
Awai L, Bolliger M, Ferguson AR, Courtine G, Curt A. Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury. Neurorehabil Neural Repair. 2016 Jul;30(6):562-72. doi: 10.1177/1545968315600524. Epub 2015 Oct 1.
Straube DD, Holleran CL, Kinnaird CR, Leddy AL, Hennessy PW, Hornby TG. Effects of dynamic stepping training on nonlocomotor tasks in individuals poststroke. Phys Ther. 2014 Jul;94(7):921-33. doi: 10.2522/ptj.20130544. Epub 2014 Mar 13.
von Zitzewitz J, Asboth L, Fumeaux N, Hasse A, Baud L, Vallery H, Courtine G. A neurorobotic platform for locomotor prosthetic development in rats and mice. J Neural Eng. 2016 Apr;13(2):026007. doi: 10.1088/1741-2560/13/2/026007. Epub 2016 Feb 10.
Dominici N, Keller U, Vallery H, Friedli L, van den Brand R, Starkey ML, Musienko P, Riener R, Courtine G. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nat Med. 2012 Jul;18(7):1142-7. doi: 10.1038/nm.2845.
Wenger N, Moraud EM, Raspopovic S, Bonizzato M, DiGiovanna J, Musienko P, Morari M, Micera S, Courtine G. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci Transl Med. 2014 Sep 24;6(255):255ra133. doi: 10.1126/scitranslmed.3008325.
Vallery H, Lutz P, von Zitzewitz J, Rauter G, Fritschi M, Everarts C, Ronsse R, Curt A, Bolliger M. Multidirectional transparent support for overground gait training. IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650512. doi: 10.1109/ICORR.2013.6650512.
Swinnen E, Baeyens JP, Pintens S, Van Nieuwenhoven J, Ilsbroukx S, Buyl R, Ron C, Goossens M, Meeusen R, Kerckhofs E. Trunk kinematics during walking in persons with multiple sclerosis: the influence of body weight support. NeuroRehabilitation. 2014;34(4):731-40. doi: 10.3233/NRE-141089.
Ganesan M, Sathyaprabha TN, Gupta A, Pal PK. Effect of partial weight-supported treadmill gait training on balance in patients with Parkinson disease. PM R. 2014 Jan;6(1):22-33. doi: 10.1016/j.pmrj.2013.08.604. Epub 2013 Sep 8.
Miyai I, Fujimoto Y, Yamamoto H, Ueda Y, Saito T, Nozaki S, Kang J. Long-term effect of body weight-supported treadmill training in Parkinson's disease: a randomized controlled trial. Arch Phys Med Rehabil. 2002 Oct;83(10):1370-3. doi: 10.1053/apmr.2002.34603.
Threlkeld AJ, Cooper LD, Monger BP, Craven AN, Haupt HG. Temporospatial and kinematic gait alterations during treadmill walking with body weight suspension. Gait Posture. 2003 Jun;17(3):235-45. doi: 10.1016/s0966-6362(02)00105-4.
Dragunas AC, Gordon KE. Body weight support impacts lateral stability during treadmill walking. J Biomech. 2016 Sep 6;49(13):2662-2668. doi: 10.1016/j.jbiomech.2016.05.026. Epub 2016 Jun 1.
Lewek MD. The influence of body weight support on ankle mechanics during treadmill walking. J Biomech. 2011 Jan 4;44(1):128-33. doi: 10.1016/j.jbiomech.2010.08.037. Epub 2010 Sep 19.
Mignardot JB, Le Goff CG, van den Brand R, Capogrosso M, Fumeaux N, Vallery H, Anil S, Lanini J, Fodor I, Eberle G, Ijspeert A, Schurch B, Curt A, Carda S, Bloch J, von Zitzewitz J, Courtine G. A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke or spinal cord injury. Sci Transl Med. 2017 Jul 19;9(399):eaah3621. doi: 10.1126/scitranslmed.aah3621.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
CliniqueRR-05
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.