MSC-Exos Promote Healing of MHs

NCT ID: NCT03437759

Last Updated: 2021-04-06

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Clinical Phase

EARLY_PHASE1

Total Enrollment

44 participants

Study Classification

INTERVENTIONAL

Study Start Date

2017-03-01

Study Completion Date

2021-12-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Purpose: To assess the safety and efficacy of mesenchymal stem cells (MSCs) and MSC-derived exosomes (MSC-Exos) for promoting healing of large and refractory macular holes (MHs).

Hypothesis: MSC and MSC-Exo therapy may promote functional and anatomic recovery from MH. MSC-Exo therapy may be a useful and safe method for improving visual outcomes of surgery for refractory MHs.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Based on the purpose and hypothesis,the participants with large and longstanding idiopathic MHs underwent vitrectomy, internal limiting membrane peeling, MSC or MSC-Exo intravitreal injection, and heavy silicon oil, air, 20% SF6, or 14% C3F8 tamponade. MSCs were isolated from human umbilical cord, and MSC-Exos were isolated from supernatants of MSCs via sequential ultracentrifugation. At the time of study enrollment, as well as physical examinations, best-corrected visual acuity (BCVA) and intraocular pressure will be measured and fundoscopy be performed. All diagnoses of MH are going to confirmed via spectral-domain optical coherence tomography (OCT), and the minimum linear diameter (MLD) of each MH will be measured parallel to the retinal pigment epithelium.The participants are going to be followed up for at least 6 months via BCVA measurement, fundoscopy, OCT, and physical examinations.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Macular Holes

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

SINGLE

Participants

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Experimental group

Our intervention is to add treatment of exosomes derived from mesenchymal stem cells (MSC-Exo) after pars plana vitrectomy(PPV) and ILM peeling.

Group Type EXPERIMENTAL

exosomes derived from mesenchymal stem cells (MSC-Exo)

Intervention Type BIOLOGICAL

After air-liquid exchange, 50μg or 20μg MSC-Exo in 10μl PBS was dripped into vitreous cavity around MH, leaving 20% SF6 or air as tamponade .

Control group

Control group that receives treatment of only pars plana vitrectomy(PPV) and ILM peeling.

Group Type NO_INTERVENTION

No interventions assigned to this group

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

exosomes derived from mesenchymal stem cells (MSC-Exo)

After air-liquid exchange, 50μg or 20μg MSC-Exo in 10μl PBS was dripped into vitreous cavity around MH, leaving 20% SF6 or air as tamponade .

Intervention Type BIOLOGICAL

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1.Clinical diagnosis of idiopathic macular hole whose diameter is greater than 400 microns

Exclusion Criteria

1. Only one functional eye
2. In other clinical trials.
3. Other diseases which can affect visual acuity, such as cataract, diabetic retinopathy, glaucoma, corneal diseases, etc.
4. Eye had undergone vitrectomy or scleral buckling, cataract surgery, Nd:YAG laser less than one month ago.
5. Contralateral eye has poor prognosis than the study eye.
6. Idiopathic or autoimmune uveitis history.
7. Aphakic eye
8. Physical condition is poor that can not keep prone position.
9. Secondary macular lesions
10. The equivalent spherical diopter of the study eye before any refractive correction or cataract surgery, which is greater than 6.0d or above 26mm of the ocular axis of the study eye.
11. Intraocular pressure is higher than 25mmHg
12. Within ocular inflammation, such as eye blepharitis, scleritis, keratitis and conjunctivitis.
13. Systemic condition is poor, such as the poor control of diabetes and hypertension, myocardial infarction, cerebrovascular accident, renal failure and so on,and the researchers assessed those who are unable to complete the trail.
Maximum Eligible Age

80 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Tianjin Medical University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Xiaomin Zhang

Principal Investigator

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Rong X Li, MD,PhD

Role: PRINCIPAL_INVESTIGATOR

Tianjin Medical University Eye Hospital

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Tianjin Medical University Hospital

Tianjin, , China

Site Status

Countries

Review the countries where the study has at least one active or historical site.

China

References

Explore related publications, articles, or registry entries linked to this study.

Rahmani B, Tielsch JM, Katz J, Gottsch J, Quigley H, Javitt J, Sommer A. The cause-specific prevalence of visual impairment in an urban population. The Baltimore Eye Survey. Ophthalmology. 1996 Nov;103(11):1721-6. doi: 10.1016/s0161-6420(96)30435-1.

Reference Type RESULT
PMID: 8942862 (View on PubMed)

Kelly NE, Wendel RT. Vitreous surgery for idiopathic macular holes. Results of a pilot study. Arch Ophthalmol. 1991 May;109(5):654-9. doi: 10.1001/archopht.1991.01080050068031.

Reference Type RESULT
PMID: 2025167 (View on PubMed)

Michalewska Z, Michalewski J, Cisiecki S, Adelman R, Nawrocki J. Correlation between foveal structure and visual outcome following macular hole surgery: a spectral optical coherence tomography study. Graefes Arch Clin Exp Ophthalmol. 2008 Jun;246(6):823-30. doi: 10.1007/s00417-007-0764-5. Epub 2008 Apr 2.

Reference Type RESULT
PMID: 18386040 (View on PubMed)

Ezra E, Gregor ZJ; Morfields Macular Hole Study Ggroup Report No. 1. Surgery for idiopathic full-thickness macular hole: two-year results of a randomized clinical trial comparing natural history, vitrectomy, and vitrectomy plus autologous serum: Morfields Macular Hole Study Group RAeport no. 1. Arch Ophthalmol. 2004 Feb;122(2):224-36. doi: 10.1001/archopht.122.2.224.

Reference Type RESULT
PMID: 14769600 (View on PubMed)

Suda K, Hangai M, Yoshimura N. Axial length and outcomes of macular hole surgery assessed by spectral-domain optical coherence tomography. Am J Ophthalmol. 2011 Jan;151(1):118-127.e1. doi: 10.1016/j.ajo.2010.07.007.

Reference Type RESULT
PMID: 20970769 (View on PubMed)

Del Priore LV, Kaplan HJ, Bonham RD. Laser photocoagulation and fluid-gas exchange for recurrent macular hole. Retina. 1994;14(4):381-2. doi: 10.1097/00006982-199414040-00018. No abstract available.

Reference Type RESULT
PMID: 7817035 (View on PubMed)

Johnson RN, McDonald HR, Schatz H, Ai E. Outpatient postoperative fluid-gas exchange after early failed vitrectomy surgery for macular hole. Ophthalmology. 1997 Dec;104(12):2009-13. doi: 10.1016/s0161-6420(97)30064-5.

Reference Type RESULT
PMID: 9400759 (View on PubMed)

Ohana E, Blumenkranz MS. Treatment of reopened macular hole after vitrectomy by laser and outpatient fluid-gas exchange. Ophthalmology. 1998 Aug;105(8):1398-403. doi: 10.1016/S0161-6420(98)98019-8.

Reference Type RESULT
PMID: 9709749 (View on PubMed)

Liggett PE, Skolik DS, Horio B, Saito Y, Alfaro V, Mieler W. Human autologous serum for the treatment of full-thickness macular holes. A preliminary study. Ophthalmology. 1995 Jul;102(7):1071-6. doi: 10.1016/s0161-6420(95)30909-8.

Reference Type RESULT
PMID: 9121755 (View on PubMed)

Wells JA, Gregor ZJ. Surgical treatment of full-thickness macular holes using autologous serum. Eye (Lond). 1996;10 ( Pt 5):593-9. doi: 10.1038/eye.1996.136.

Reference Type RESULT
PMID: 8977788 (View on PubMed)

Kim JY, Kwon OW. VITRECTOMY FOR REFRACTORY MACULAR HOLE. Retin Cases Brief Rep. 2015 Fall;9(4):265-8. doi: 10.1097/ICB.0000000000000183.

Reference Type RESULT
PMID: 26398430 (View on PubMed)

Kozy DW, Maberley AL. Closure of persistent macular holes with human recombinant transforming growth factor-beta 2. Can J Ophthalmol. 1996 Jun;31(4):179-82.

Reference Type RESULT
PMID: 8804755 (View on PubMed)

Rizzo S, Belting C, Genovesi-Ebert F, Cresti F, Vento A, Martini R. Successful treatment of persistent macular holes using "heavy silicone oil" as intraocular tamponade. Retina. 2006 Oct;26(8):905-8. doi: 10.1097/01.iae.0000250006.76155.3d.

Reference Type RESULT
PMID: 17031291 (View on PubMed)

Cillino S, Cillino G, Ferraro LL, Casuccio A. TREATMENT OF PERSISTENTLY OPEN MACULAR HOLES WITH HEAVY SILICONE OIL (DENSIRON 68) VERSUS C2F6. A PROSPECTIVE RANDOMIZED STUDY. Retina. 2016 Apr;36(4):688-94. doi: 10.1097/IAE.0000000000000781.

Reference Type RESULT
PMID: 26418444 (View on PubMed)

Michalewska Z, Michalewski J, Adelman RA, Nawrocki J. Inverted internal limiting membrane flap technique for large macular holes. Ophthalmology. 2010 Oct;117(10):2018-25. doi: 10.1016/j.ophtha.2010.02.011. Epub 2010 Jun 11.

Reference Type RESULT
PMID: 20541263 (View on PubMed)

Morizane Y, Shiraga F, Kimura S, Hosokawa M, Shiode Y, Kawata T, Hosogi M, Shirakata Y, Okanouchi T. Autologous transplantation of the internal limiting membrane for refractory macular holes. Am J Ophthalmol. 2014 Apr;157(4):861-869.e1. doi: 10.1016/j.ajo.2013.12.028. Epub 2014 Jan 10.

Reference Type RESULT
PMID: 24418265 (View on PubMed)

De Novelli FJ, Preti RC, Ribeiro Monteiro ML, Pelayes DE, Junqueira Nobrega M, Takahashi WY. Autologous Internal Limiting Membrane Fragment Transplantation for Large, Chronic, and Refractory Macular Holes. Ophthalmic Res. 2015;55(1):45-52. doi: 10.1159/000440767. Epub 2015 Nov 17.

Reference Type RESULT
PMID: 26569390 (View on PubMed)

Jiang Y, Zhang Y, Zhang L, Wang M, Zhang X, Li X. Therapeutic effect of bone marrow mesenchymal stem cells on laser-induced retinal injury in mice. Int J Mol Sci. 2014 May 27;15(6):9372-85. doi: 10.3390/ijms15069372.

Reference Type RESULT
PMID: 24871366 (View on PubMed)

Yu B, Shao H, Su C, Jiang Y, Chen X, Bai L, Zhang Y, Li Q, Zhang X, Li X. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Sci Rep. 2016 Sep 30;6:34562. doi: 10.1038/srep34562.

Reference Type RESULT
PMID: 27686625 (View on PubMed)

Zhang L, Zheng H, Shao H, Nian H, Zhang Y, Bai L, Su C, Liu X, Dong L, Li X, Zhang X. Long-term therapeutic effects of mesenchymal stem cells compared to dexamethasone on recurrent experimental autoimmune uveitis of rats. Invest Ophthalmol Vis Sci. 2014 Aug 14;55(9):5561-71. doi: 10.1167/iovs.14-14788.

Reference Type RESULT
PMID: 25125599 (View on PubMed)

Chen X, Shao H, Zhi Y, Xiao Q, Su C, Dong L, Liu X, Li X, Zhang X. CD73 Pathway Contributes to the Immunosuppressive Ability of Mesenchymal Stem Cells in Intraocular Autoimmune Responses. Stem Cells Dev. 2016 Feb 15;25(4):337-46. doi: 10.1089/scd.2015.0227. Epub 2016 Jan 29.

Reference Type RESULT
PMID: 26650818 (View on PubMed)

Li G, Yuan L, Ren X, Nian H, Zhang L, Han ZC, Li X, Zhang X. The effect of mesenchymal stem cells on dynamic changes of T cell subsets in experimental autoimmune uveoretinitis. Clin Exp Immunol. 2013 Jul;173(1):28-37. doi: 10.1111/cei.12080.

Reference Type RESULT
PMID: 23607419 (View on PubMed)

Zhang X, Ren X, Li G, Jiao C, Zhang L, Zhao S, Wang J, Han ZC, Li X. Mesenchymal stem cells ameliorate experimental autoimmune uveoretinitis by comprehensive modulation of systemic autoimmunity. Invest Ophthalmol Vis Sci. 2011 May 16;52(6):3143-52. doi: 10.1167/iovs.10-6334.

Reference Type RESULT
PMID: 21296818 (View on PubMed)

Machalinska A, Kawa M, Pius-Sadowska E, Stepniewski J, Nowak W, Roginska D, Kaczynska K, Baumert B, Wiszniewska B, Jozkowicz A, Dulak J, Machalinski B. Long-term neuroprotective effects of NT-4-engineered mesenchymal stem cells injected intravitreally in a mouse model of acute retinal injury. Invest Ophthalmol Vis Sci. 2013 Dec 23;54(13):8292-305. doi: 10.1167/iovs.13-12221.

Reference Type RESULT
PMID: 24265016 (View on PubMed)

Rotenstreich Y, Tzameret A, Kalish SE, Belkin M, Meir A, Treves AJ, Naglera A, Sher I. [A novel system for minimally invasive transplantation of bone marrow derived stem cells as a thin layer in the subretina and extravascular spaces of the choroid--for treatment of retinal degeneration]. Harefuah. 2015 Feb;154(2):84-8, 138. Hebrew.

Reference Type RESULT
PMID: 25856858 (View on PubMed)

Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014 Mar 7;15(3):4142-57. doi: 10.3390/ijms15034142.

Reference Type RESULT
PMID: 24608926 (View on PubMed)

Doeppner TR, Herz J, Gorgens A, Schlechter J, Ludwig AK, Radtke S, de Miroschedji K, Horn PA, Giebel B, Hermann DM. Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl Med. 2015 Oct;4(10):1131-43. doi: 10.5966/sctm.2015-0078. Epub 2015 Sep 3.

Reference Type RESULT
PMID: 26339036 (View on PubMed)

Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, Zhang ZG, Chopp M. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013 Dec;31(12):2737-46. doi: 10.1002/stem.1409.

Reference Type RESULT
PMID: 23630198 (View on PubMed)

Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, Shu W, Jiang F, Chopp M. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 2013 Jul 10;335(1):201-4. doi: 10.1016/j.canlet.2013.02.019. Epub 2013 Feb 16.

Reference Type RESULT
PMID: 23419525 (View on PubMed)

Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG, Chopp M. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012 Jul;30(7):1556-64. doi: 10.1002/stem.1129.

Reference Type RESULT
PMID: 22605481 (View on PubMed)

Maltman DJ, Hardy SA, Przyborski SA. Role of mesenchymal stem cells in neurogenesis and nervous system repair. Neurochem Int. 2011 Sep;59(3):347-56. doi: 10.1016/j.neuint.2011.06.008. Epub 2011 Jun 21.

Reference Type RESULT
PMID: 21718735 (View on PubMed)

Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 2010 Nov;5(6):933-46. doi: 10.2217/rme.10.72.

Reference Type RESULT
PMID: 21082892 (View on PubMed)

Singh MS, Balmer J, Barnard AR, Aslam SA, Moralli D, Green CM, Barnea-Cramer A, Duncan I, MacLaren RE. Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nat Commun. 2016 Nov 30;7:13537. doi: 10.1038/ncomms13537.

Reference Type RESULT
PMID: 27901042 (View on PubMed)

Pearson RA, Gonzalez-Cordero A, West EL, Ribeiro JR, Aghaizu N, Goh D, Sampson RD, Georgiadis A, Waldron PV, Duran Y, Naeem A, Kloc M, Cristante E, Kruczek K, Warre-Cornish K, Sowden JC, Smith AJ, Ali RR. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commun. 2016 Oct 4;7:13029. doi: 10.1038/ncomms13029.

Reference Type RESULT
PMID: 27701378 (View on PubMed)

Yeo RW, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ, Lim SK. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 2013 Mar;65(3):336-41. doi: 10.1016/j.addr.2012.07.001. Epub 2012 Jul 7.

Reference Type RESULT
PMID: 22780955 (View on PubMed)

Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L, Yu B, Chen X, Li X, Zhang X. Effects of Mesenchymal Stem Cell-Derived Exosomes on Experimental Autoimmune Uveitis. Sci Rep. 2017 Jun 28;7(1):4323. doi: 10.1038/s41598-017-04559-y.

Reference Type RESULT
PMID: 28659587 (View on PubMed)

Hillenkamp J, Kraus J, Framme C, Jackson TL, Roider J, Gabel VP, Sachs HG. Retreatment of full-thickness macular hole: predictive value of optical coherence tomography. Br J Ophthalmol. 2007 Nov;91(11):1445-9. doi: 10.1136/bjo.2007.115642. Epub 2007 May 2.

Reference Type RESULT
PMID: 17475704 (View on PubMed)

Xin H, Li Y, Chopp M. Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci. 2014 Nov 10;8:377. doi: 10.3389/fncel.2014.00377. eCollection 2014.

Reference Type RESULT
PMID: 25426026 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

2015KY-05

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

OCT in Fuchs' Dystrophy
NCT04258787 RECRUITING