Hyperhidrosis, Developing a Treatment Approach Aims 1 & 2
NCT ID: NCT03416348
Last Updated: 2022-10-17
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE1
95 participants
INTERVENTIONAL
2018-05-08
2022-02-14
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Aim 1: Test the validity of the Minor iodine-starch test in amputees. Hypothesis: The iodine-starch test is a valid diagnostic tool of hyperhidrosis and can be useful for the identification of focal areas of sweating on a residual limb Aim 2: Test the effectiveness of a prescription strength topical antiperspirant (Aluminum Chloride 20%) on hyperhidrosis of the residual limb.
Hypothesis: Aluminum Chloride will be more effective at controlling sweating than placebo
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Antiperspirant in the Treatment of Residual Limp Hyperhidrosis for Prosthetic Users
NCT05501444
Qbrexza Cloths for Hyperhidrosis of Amputation Sites
NCT04924036
Adherence and Perspiration While Wearing Lower Limb Prostheses
NCT03900845
Optimizing Prosthetic Prescription to Mitigate the Effects of Perspiration
NCT07024342
Comparison of Non-Surgical Treatment Options for Chronic Exertional Compartment Syndrome (CECS)
NCT04409600
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Successful use of a prosthesis requires a stable interface between the residual limb and the prosthetic socket. Maintaining healthy skin, therefore, is paramount. However, the closed environment necessary to provide this stable interface also creates an environment that may lead to a multitude of skin problems. Amputees regularly deal with skin problems such as sweating, eczematous itching and redness, infections, and mechanical problems such as blisters and open wounds. Hyperhidrosis is the single most reported problem. Hyperhidrosis is reported in up to 70% of amputee and is associated with reduced quality of life, reduced prosthetic fit and function, decreased satisfaction with their prosthesis and skin irritation. The investigators own published findings reveal that 66% of prosthetic users (both veteran and civilian) experienced residual limb sweating that interfered with activities of daily living. Sweating was rated as most bothersome in warm weather or with vigorous activity, and the efficacy of treatment strategies was generally reported to be poor.
Despite the frequency and impact of hyperhidrosis in amputees, there is a lack of evidence based guidelines for evaluating and treating this problem. A number of knowledge gaps exist, including no clear standard for assessing the burden of sweating in amputees, and no evidence base from which to inform treatment decisions for either simple or more elaborate interventions.
There is no universally accepted standard for assessing the burden and precise location of sweating in amputee patients. Among the several subjective scales of hyperhidrosis severity in the dermatology literature, the most commonly used and rigorously validated one is the Hyperhidrosis Disease Severity Scale (HDSS). The HDSS provides a qualitative measure for the severity of the patient's condition based on the extent to which hyperhidrosis affects daily activities. The HDSS is simple to administer and scored as follows:
Hyperhidrosis Disease Severity Scale
Condition:
Score
1. My sweating is never noticeable and never interferes with my daily activities
2. My sweating is tolerable but sometimes interferes with my daily activities
3. My sweating is barely tolerable and frequently interferes with my daily activities
4. My sweating is intolerable and always interferes with my daily activities
In the general hyperhidrosis patient population (non-amputee), the HDSS exhibits moderate to strong correlations with other quality of life and disease impact metrics, as well as with gravimetric sweat production. A 1 point improvement on the HDSS correlates with a 50% reduction in sweat production, while a 2 point improvement correlates with an 80% reduction in sweat production. The investigators survey data shows the HDSS correlates well with amputees' perception of the impact of sweating on their prosthesis fit and function, and is therefore a valid outcome measure in the amputee population.
While the HDSS gives a global, patient-reported outcome of the significance of hyperhidrosis in the patient's life, it does not inform the treating clinician on the precise location of the problem. Dermatologists treating hyperhidrosis of other regions (i.e. axillary, palmar, plantar) use the Minor iodine-starch test to identify the area of hyperhidrosis in order to guide subsequent treatments. This test consists of an application of iodine, which is allowed to dry and then dusted with cornstarch. Sweat will react with the iodine and starch and produce a black/purple color. While this test is primarily used to identify the areas of hyperhidrosis, a grading scale has been proposed for test interpretation and monitoring response to treatments. There is scant literature describing the iodine-starch test in amputees and the investigators early experience suggests that it is insufficient to simply apply iodine and starch on a residual limb without then donning the patient's prosthesis. It appears necessary to recreate the environment that produces the excessive sweating by donning the prosthesis and ambulating. It is not known, however, what method is safe and effective, without causing harm to the patient's skin and/or prosthetic materials.
As part of the scope of the research proposed herein, the investigators have done pilot work with 9 subjects and 11 amputation sites, utilizing the iodine-starch test under a variety of conditions to assess which method is most feasible to allow the patient to use their prosthesis in the test. Preliminary results suggest that plastic wrap is adequate to protect the prosthesis from significant iodine stain and does not cause new skin irritation, but is more often viewed as uncomfortable. It also appears to induce a very rapid and diffuse pattern sweating, raising concern for creating too much of a false positive effect. A prosthetic sheath appears to protect the liner from dense stain, though some light iodine stain has been observed to seep onto the liner in some cases. This method, though, is generally viewed as comfortable to the patient, does not cause new skin irritation, and does produce a positive test after 10 - 15 minutes of walking in focal areas more consistent with the patient's described experience with sweat and sweat location.
The investigators believe that applying the iodine-starch combination, donning a prosthetic sheath, the patient's own prosthesis, followed by a period of ambulation is the best method for future studies.
Beyond the assessment of hyperhidrosis, treatment guidelines for this problem have not been rigorously applied to amputees. In the dermatology literature, guidelines recommend using a topical antiperspirant such as Aluminum Chloride (AlCl) as first line treatment. For axillary hyperhidrosis, treatment success with AlCl (defined as a post treatment HDSS score of 1, has varied from 33% to 72% in clinical trials). However, in the amputee population, there are no published clinical trials describing the effectiveness or tolerability of a topical treatment, and if it is ineffective or intolerable, when to consider another option such as botulinum toxin injections, which are generally considered as second line treatment. The investigators found through a survey that 50% of respondents had tried either an over the counter or prescription strength antiperspirant. Of those respondents having tried such an agent, nearly 50% reported them to have no efficacy, and only about 20% reported them to be completely or mostly effective. Clearly this data has limitations, due to subject recall bias, and is not the product of an intervention study. It does, however, illustrate that a majority of amputees may not have satisfactory options to treat this problem.
There have been a few case reports and/or case series reporting the use of botulinum toxin to treat this problem in amputees. While these preliminary reports suggest that botulinum toxin is an effective treatment option, they are limited by the fact that the intervention was tried on such a small number of patients. Kern et al used botulinum toxin type B (BTX-B) in 9 patients while Charrow et al. used botulinum toxin type A (BTX-A) in 8 patients. Both reported good effectiveness in treating hyperhidrosis but neither utilized a validated method to determine effectiveness, nor did the subjects fail a topical treatment prior to botulinum toxin treatment.
Further, there is no published literature describing the best way to localize botulinum toxin application for amputee hyperhidrosis. In considering the feasibility of widespread adoption of botulinum toxin as a treatment for amputee hyperhidrosis, one of the biggest barriers could be the large surface area involved that needs to be treated.
Dermatologists use the iodine-starch test to identify the hyperhidrotric area that will be targeted with the botulinum toxin injection. For palmar, axillary, and plantar hyperhidrosis, it is recommended that every patient be assessed with this method. A single case study has reported the successful use of the iodine-starch test to help identify hyperhidrotic areas on a residual limb. However, it has not been well studied to know if the iodine-starch test can be utilized in amputees to identify potential sites for injection, or even if the pattern of sweating can be demonstrated to be a focal, not a global, problem. If the iodine-starch test can be used successfully in amputees, it could help direct botulinum toxin injections to a focused area, rather than an entire residual limb. This could have significant impact on the overall tolerability of the procedure and the willingness of both patients and providers to implement it in usual clinical care.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Placebo Comparator AIM 1
Aim 1: Demonstration of a strong association of the Sweating Intensity Visual Scale (SIVS) score with the HDSS would provide validation for use of the SIVS in interpreting the iodine-starch test and would establish the value of the iodine-starch test in clinical practice guidelines for diagnosing hyperhidrosis in amputees, just as it is in dermatology practice.
Aluminum Chloride 20% (deodorant)
Aluminum Chloride (deodorant)
Alcohol
Placebo
Aluminum Chloride vs Placebo in Amputees
Aim 2: The investigators will have completed the first clinical trial of Aluminum Chloride for residual limb hyperhidrosis. The investigators will then have a solid foundation of data that demonstrates the rates of adverse effects such as skin irritation, and rates and magnitudes of improvement in subjective and objective measures of sweating.
Aluminum Chloride 20% (deodorant)
Aluminum Chloride (deodorant)
Alcohol
Placebo
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Aluminum Chloride 20% (deodorant)
Aluminum Chloride (deodorant)
Alcohol
Placebo
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Stated willingness to comply with all study procedures and availability for the duration of the study
* Male or female, age 18 or older
* Have a prosthetic device
* In good general health as evidenced by medical history
* If subject is currently using aluminum chloride participant must be discontinued for at least one week prior to participation in the study.
Exclusion Criteria
* Known sensitivity or allergy to iodine
* Known sensitivity to antiperspirant, aluminum chloride hexahydrate
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
US Department of Veterans Affairs
FED
U.S. Army Medical Research and Development Command
FED
University of Utah
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Colby Hansen
Principle Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Colby Hansen, MD
Role: PRINCIPAL_INVESTIGATOR
University of Utah
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
George E. Wahlen Department of Veterans Affairs Medical Center
Salt Lake City, Utah, United States
University of Utah
Salt Lake City, Utah, United States
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
OP150030
Identifier Type: OTHER_GRANT
Identifier Source: secondary_id
OP150030 (Aim 1&2)
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.