Diffusion Weighted Magnetic Resonance Imaging in Chronic Kidney Disease

NCT ID: NCT03174899

Last Updated: 2018-07-10

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Clinical Phase

NA

Total Enrollment

31 participants

Study Classification

INTERVENTIONAL

Study Start Date

2018-07-01

Study Completion Date

2019-08-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Chronic kidney disease (CKD) is a common global public health problem and the average incidence of end-stage renal disease in developing countries is 150 per million population, which is lower than that in the developed world

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Since renal parenchymal disease is accompanied by renal dysfunction, monitoring renal function permits assessment of disease progression, and periodic assessment of renal function is necessary for optimal management of a patient with suspected/proven renal disease. Serum creatinine (S Cr), blood urea (BU), and estimated glomerular filtration rate (eGFR) derived from creatinine clearance are useful for monitoring renal function; however, these indirect measures of renal filtration are imperfect and cannot assess single kidney function.

Keeping in view the limitations of serum markers, imaging may play an important role in the evaluation of renal parenchymal disease. Ultrasonography (US) and computed tomographic (CT) scan provide good anatomic images but limited functional information. Although US may show changes in renal echogenicity, it suffers from operator dependency and lacks objectivity. In addition to exposure to ionizing radiation, computed tomography (CT) scan requires use of iodinated contrast material, which is undesirable in patients with renal dysfunction. Magnetic resonance imaging (MRI) has the unique ability to show both structure and function objectively without any radiation exposure to the patient. Functional MRI techniques such as diffusion-weighted imaging (DWI), blood oxygen level-dependent (BOLD) imaging have potential utility in the evaluation of renal function .

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Renal Disease

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NON_RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

DIAGNOSTIC

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Stage1:eGFR; ≥90 mL/min/1.73 m2 .

All MRI examinations will be performed with a 1.5-T scanner (Acheiva, Philips, and Netherland). All MRI scans will be obtained with the following parameters: Repetition time (TR); 1580 MS, echo time (TE); 60 MS, slice thickness; 1-5 mm, receiver bandwidth; 1158 kHz/pixel, field of view (FOV); 40 cm, matrix size; 164 × 159. . ADC value of the kidneys will be calculated with Diffusion weighted magnetic resonance imaging gradient b-values of 0 and 1000s/mm2. In the axial ADC map, a region of interest (ROI) will be placed for measurement of ADC values on the renal parenchyma of both kidneys, without any preference for cortex or medulla. Three circular ROIs of size 1 cm2 will be placed-one each at the upper pole, inter-polar region, and lower pole of both kidneys-and 6 total ROIs from bilateral kidneys will be averaged for each patient. The mean ADC values will be recorded for each patient and the relationship of ADC values with CKD stage will be evaluated.

Group Type EXPERIMENTAL

Diffusion weighted magnetic resonance imaging

Intervention Type RADIATION

All MRI examinations will be performed with a 1.5-T scanner (Acheiva, Philips, and Netherland). All MRI scans will be obtained with the following parameters: Repetition time (TR); 1580 MS, echo time (TE); 60 MS, slice thickness; 1-5 mm, receiver bandwidth; 1158 kHz/pixel, field of view (FOV); 40 cm, matrix size; 164 × 159. ADC value of the kidneys will be calculated with Diffusion weighted magnetic resonance imaging gradient b-values of 0 and 1000s/mm2. In the axial ADC map, a region of interest (ROI) will be placed for measurement of ADC values on the renal parenchyma of both kidneys, without any preference for cortex or medulla. Three circular ROIs of size 1 cm2 will be placed-one each at the upper pole, inter-polar region, and lower pole of both kidneys-and 6 total ROIs from bilateral kidneys will be averaged for each patient.

Stage 2: eGFR; 60-89 mL/min/1.73 m2 .

All MRI examinations will be performed with a 1.5-T scanner (Acheiva, Philips, and Netherland). All MRI scans will be obtained with the following parameters: Repetition time (TR); 1580 MS, echo time (TE); 60 MS, slice thickness; 1-5 mm, receiver bandwidth; 1158 kHz/pixel, field of view (FOV); 40 cm, matrix size; 164 × 159. ADC value of the kidneys will be calculated with Diffusion weighted magnetic resonance imaging gradient b-values of 0 and 1000s/mm2. In the axial ADC map, a region of interest (ROI) will be placed for measurement of ADC values on the renal parenchyma of both kidneys, without any preference for cortex or medulla. Three circular ROIs of size 1 cm2 will be placed-one each at the upper pole, inter-polar region, and lower pole of both kidneys-and 6 total ROIs from bilateral kidneys will be averaged for each patient. The mean ADC values will be recorded for each patient and the relationship of ADC values with CKD stage will be evaluated.

Group Type EXPERIMENTAL

Diffusion weighted magnetic resonance imaging

Intervention Type RADIATION

All MRI examinations will be performed with a 1.5-T scanner (Acheiva, Philips, and Netherland). All MRI scans will be obtained with the following parameters: Repetition time (TR); 1580 MS, echo time (TE); 60 MS, slice thickness; 1-5 mm, receiver bandwidth; 1158 kHz/pixel, field of view (FOV); 40 cm, matrix size; 164 × 159. ADC value of the kidneys will be calculated with Diffusion weighted magnetic resonance imaging gradient b-values of 0 and 1000s/mm2. In the axial ADC map, a region of interest (ROI) will be placed for measurement of ADC values on the renal parenchyma of both kidneys, without any preference for cortex or medulla. Three circular ROIs of size 1 cm2 will be placed-one each at the upper pole, inter-polar region, and lower pole of both kidneys-and 6 total ROIs from bilateral kidneys will be averaged for each patient.

Stage 3:eGFR; 30-59 mL/min/1.73 m2

All MRI examinations will be performed with a 1.5-T scanner (Acheiva, Philips, and Netherland). All MRI scans will be obtained with the following parameters: Repetition time (TR); 1580 MS, echo time (TE); 60 MS, slice thickness; 1-5 mm, receiver bandwidth; 1158 kHz/pixel, field of view (FOV); 40 cm, matrix size; 164 × 159. ADC value of the kidneys will be calculated with Diffusion weighted magnetic resonance imaging gradient b-values of 0 and 1000s/mm2. In the axial ADC map, a region of interest (ROI) will be placed for measurement of ADC values on the renal parenchyma of both kidneys, without any preference for cortex or medulla. Three circular ROIs of size 1 cm2 will be placed-one each at the upper pole, inter-polar region, and lower pole of both kidneys-and 6 total ROIs from bilateral kidneys will be averaged for each patient. The mean ADC values will be recorded for each patient and the relationship of ADC values with CKD stage will be evaluated.

Group Type EXPERIMENTAL

Diffusion weighted magnetic resonance imaging

Intervention Type RADIATION

All MRI examinations will be performed with a 1.5-T scanner (Acheiva, Philips, and Netherland). All MRI scans will be obtained with the following parameters: Repetition time (TR); 1580 MS, echo time (TE); 60 MS, slice thickness; 1-5 mm, receiver bandwidth; 1158 kHz/pixel, field of view (FOV); 40 cm, matrix size; 164 × 159. ADC value of the kidneys will be calculated with Diffusion weighted magnetic resonance imaging gradient b-values of 0 and 1000s/mm2. In the axial ADC map, a region of interest (ROI) will be placed for measurement of ADC values on the renal parenchyma of both kidneys, without any preference for cortex or medulla. Three circular ROIs of size 1 cm2 will be placed-one each at the upper pole, inter-polar region, and lower pole of both kidneys-and 6 total ROIs from bilateral kidneys will be averaged for each patient.

Stage 4:eGFR; 15-29 mL/min/1.73 m2 .

All MRI examinations will be performed with a 1.5-T scanner (Acheiva, Philips, and Netherland). All MRI scans will be obtained with the following parameters: Repetition time (TR); 1580 MS, echo time (TE); 60 MS, slice thickness; 1-5 mm, receiver bandwidth; 1158 kHz/pixel, field of view (FOV); 40 cm, matrix size; 164 × 159. ADC value of the kidneys will be calculated with Diffusion weighted magnetic resonance imaginggradient b-values of 0 and 1000s/mm2. In the axial ADC map, a region of interest (ROI) will be placed for measurement of ADC values on the renal parenchyma of both kidneys, without any preference for cortex or medulla. Three circular ROIs of size 1 cm2 will be placed-one each at the upper pole, inter-polar region, and lower pole of both kidneys-and 6 total ROIs from bilateral kidneys will be averaged for each patient. The mean ADC values will be recorded for each patient and the relationship of ADC values with CKD stage will be evaluated.

Group Type EXPERIMENTAL

Diffusion weighted magnetic resonance imaging

Intervention Type RADIATION

All MRI examinations will be performed with a 1.5-T scanner (Acheiva, Philips, and Netherland). All MRI scans will be obtained with the following parameters: Repetition time (TR); 1580 MS, echo time (TE); 60 MS, slice thickness; 1-5 mm, receiver bandwidth; 1158 kHz/pixel, field of view (FOV); 40 cm, matrix size; 164 × 159. ADC value of the kidneys will be calculated with Diffusion weighted magnetic resonance imaging gradient b-values of 0 and 1000s/mm2. In the axial ADC map, a region of interest (ROI) will be placed for measurement of ADC values on the renal parenchyma of both kidneys, without any preference for cortex or medulla. Three circular ROIs of size 1 cm2 will be placed-one each at the upper pole, inter-polar region, and lower pole of both kidneys-and 6 total ROIs from bilateral kidneys will be averaged for each patient.

Stage 5:eGFR; < 15 mL/min/1.73 m2.

All MRI examinations will be performed with a 1.5-T scanner (Acheiva, Philips, and Netherland). All MRI scans will be obtained with the following parameters: Repetition time (TR); 1580 MS, echo time (TE); 60 MS, slice thickness; 1-5 mm, receiver bandwidth; 1158 kHz/pixel, field of view (FOV); 40 cm, matrix size; 164 × 159. ADC value of the kidneys will be calculated with Diffusion weighted magnetic resonance imaging gradient b-values of 0 and 1000s/mm2. In the axial ADC map, a region of interest (ROI) will be placed for measurement of ADC values on the renal parenchyma of both kidneys, without any preference for cortex or medulla. Three circular ROIs of size 1 cm2 will be placed-one each at the upper pole, inter-polar region, and lower pole of both kidneys-and 6 total ROIs from bilateral kidneys will be averaged for each patient. The mean ADC values will be recorded for each patient and the relationship of ADC values with CKD stage will be evaluated.

Group Type EXPERIMENTAL

Diffusion weighted magnetic resonance imaging

Intervention Type RADIATION

All MRI examinations will be performed with a 1.5-T scanner (Acheiva, Philips, and Netherland). All MRI scans will be obtained with the following parameters: Repetition time (TR); 1580 MS, echo time (TE); 60 MS, slice thickness; 1-5 mm, receiver bandwidth; 1158 kHz/pixel, field of view (FOV); 40 cm, matrix size; 164 × 159. ADC value of the kidneys will be calculated with Diffusion weighted magnetic resonance imaging gradient b-values of 0 and 1000s/mm2. In the axial ADC map, a region of interest (ROI) will be placed for measurement of ADC values on the renal parenchyma of both kidneys, without any preference for cortex or medulla. Three circular ROIs of size 1 cm2 will be placed-one each at the upper pole, inter-polar region, and lower pole of both kidneys-and 6 total ROIs from bilateral kidneys will be averaged for each patient.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Diffusion weighted magnetic resonance imaging

All MRI examinations will be performed with a 1.5-T scanner (Acheiva, Philips, and Netherland). All MRI scans will be obtained with the following parameters: Repetition time (TR); 1580 MS, echo time (TE); 60 MS, slice thickness; 1-5 mm, receiver bandwidth; 1158 kHz/pixel, field of view (FOV); 40 cm, matrix size; 164 × 159. ADC value of the kidneys will be calculated with Diffusion weighted magnetic resonance imaging gradient b-values of 0 and 1000s/mm2. In the axial ADC map, a region of interest (ROI) will be placed for measurement of ADC values on the renal parenchyma of both kidneys, without any preference for cortex or medulla. Three circular ROIs of size 1 cm2 will be placed-one each at the upper pole, inter-polar region, and lower pole of both kidneys-and 6 total ROIs from bilateral kidneys will be averaged for each patient.

Intervention Type RADIATION

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Patients in different age and sex groups with CKD detected by clinical and laboratory examination.

Exclusion Criteria

* Patients with any general contraindication to MRI as presence of any paramagnetic substance as pacemakers or in severely ill patients or those with claustrophobia and arrhythmic patients.
Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Assiut University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

DMAhmed

Principal investigator

Responsibility Role PRINCIPAL_INVESTIGATOR

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Ahmed Moustafa Hamed, MD

Role: CONTACT

01000024182

Nisreen adel abbas mohammed, MD

Role: CONTACT

01229199971

References

Explore related publications, articles, or registry entries linked to this study.

Prigent A. Monitoring renal function and limitations of renal function tests. Semin Nucl Med. 2008 Jan;38(1):32-46. doi: 10.1053/j.semnuclmed.2007.09.003.

Reference Type BACKGROUND
PMID: 18096462 (View on PubMed)

Squillaci E, Manenti G, Di Stefano F, Miano R, Strigari L, Simonetti G. Diffusion-weighted MR imaging in the evaluation of renal tumours. J Exp Clin Cancer Res. 2004 Mar;23(1):39-45.

Reference Type BACKGROUND
PMID: 15149149 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

DMR

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Kidney Fibrosis and MRI
NCT03964948 COMPLETED NA
MRI in Renal Tumors
NCT02325921 COMPLETED
Renal NCE-MRI in Healthy Volunteers
NCT02618460 COMPLETED NA
Imaging Techniques in MRI
NCT01130545 RECRUITING