HFNC Flow Titration and Effort of Breathing in the PICU
NCT ID: NCT02793674
Last Updated: 2024-10-30
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
21 participants
INTERVENTIONAL
2014-09-30
2016-07-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Nasal High Flow Therapy in the Paediatric Home Setting
NCT04037839
Comparison Between 2l vs 3l in HFNC During the Initial Management of Severe Bronchiolitis in Infants
NCT02824744
Humidified High Flow Nasal Cannula Versus Nasal Intermittent Positive Ventilation in Neonates
NCT02499744
Interest of High Flow Nasal Cannula (HFNC) Versus Non Invasive Ventilation During the Initial Management of Severe Bronchiolitis in Infants
NCT02457013
Comparison of Two Flow Rates of HHHFNC to Prevent Extubation Failure in Preterm Infants
NCT02681315
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Fisher & Paykel high flow nasal cannula
All participants in the study were on one or two high flow nasal cannula (HFNC) delivery systems. All were measured on the Fisher \& Paykel HFNC delivery system. The flow rate of the HFNC was adjusted to determine if there exists a change in their effort of breathing.
Fisher & Paykel high flow nasal cannula
Measurements of effort of breathing will be obtained at flow rates of 0.5, 1.0, 1.5, and 2.0 L/kg/min. Adequate time will be allowed at each flow rate for stabilization of EOB and flow levels will be trialed in a random order, each being trialed for approximately 5 minutes.
Vapotherm high flow nasal cannula
All participants in the study were on one or two high flow nasal cannula (HFNC) delivery systems. A subgroup was measured on the Vapotherm HFNC delivery system. The flow rate of the HFNC was adjusted to determine if there exists a change in their effort of breathing.
Vapotherm high flow nasal cannula
Measurements of effort of breathing will be obtained at flow rates of 0.5, 1.0, 1.5, and 2.0 L/kg/min. Adequate time will be allowed at each flow rate for stabilization of EOB and flow levels will be trialed in a random order, each being trialed for approximately 5 minutes.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Fisher & Paykel high flow nasal cannula
Measurements of effort of breathing will be obtained at flow rates of 0.5, 1.0, 1.5, and 2.0 L/kg/min. Adequate time will be allowed at each flow rate for stabilization of EOB and flow levels will be trialed in a random order, each being trialed for approximately 5 minutes.
Vapotherm high flow nasal cannula
Measurements of effort of breathing will be obtained at flow rates of 0.5, 1.0, 1.5, and 2.0 L/kg/min. Adequate time will be allowed at each flow rate for stabilization of EOB and flow levels will be trialed in a random order, each being trialed for approximately 5 minutes.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
3 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Children's Hospital Los Angeles
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Robinder Khemani
Principal Investigator
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Children's Hospital Los Angeles
Los Angeles, California, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Lee JH, Rehder KJ, Williford L, Cheifetz IM, Turner DA. Use of high flow nasal cannula in critically ill infants, children, and adults: a critical review of the literature. Intensive Care Med. 2013 Feb;39(2):247-57. doi: 10.1007/s00134-012-2743-5. Epub 2012 Nov 10.
McKiernan C, Chua LC, Visintainer PF, Allen H. High flow nasal cannulae therapy in infants with bronchiolitis. J Pediatr. 2010 Apr;156(4):634-8. doi: 10.1016/j.jpeds.2009.10.039. Epub 2009 Dec 29.
Schibler A, Pham TM, Dunster KR, Foster K, Barlow A, Gibbons K, Hough JL. Reduced intubation rates for infants after introduction of high-flow nasal prong oxygen delivery. Intensive Care Med. 2011 May;37(5):847-52. doi: 10.1007/s00134-011-2177-5. Epub 2011 Mar 3.
Wing R, James C, Maranda LS, Armsby CC. Use of high-flow nasal cannula support in the emergency department reduces the need for intubation in pediatric acute respiratory insufficiency. Pediatr Emerg Care. 2012 Nov;28(11):1117-23. doi: 10.1097/PEC.0b013e31827122a9.
Frizzola M, Miller TL, Rodriguez ME, Zhu Y, Rojas J, Hesek A, Stump A, Shaffer TH, Dysart K. High-flow nasal cannula: impact on oxygenation and ventilation in an acute lung injury model. Pediatr Pulmonol. 2011 Jan;46(1):67-74. doi: 10.1002/ppul.21326. Epub 2010 Nov 23.
Lavizzari A, Veneroni C, Colnaghi M, Ciuffini F, Zannin E, Fumagalli M, Mosca F, Dellaca RL. Respiratory mechanics during NCPAP and HHHFNC at equal distending pressures. Arch Dis Child Fetal Neonatal Ed. 2014 Jul;99(4):F315-20. doi: 10.1136/archdischild-2013-305855. Epub 2014 Apr 30.
Bellani G, Pesenti A. Assessing effort and work of breathing. Curr Opin Crit Care. 2014 Jun;20(3):352-8. doi: 10.1097/MCC.0000000000000089.
Bekhof J, Reimink R, Brand PL. Systematic review: insufficient validation of clinical scores for the assessment of acute dyspnoea in wheezing children. Paediatr Respir Rev. 2014 Mar;15(1):98-112. doi: 10.1016/j.prrv.2013.08.004. Epub 2013 Oct 11.
Klein M, Reynolds LG. Relief of sleep-related oropharyngeal airway obstruction by continuous insufflation of the pharynx. Lancet. 1986 Apr 26;1(8487):935-9. doi: 10.1016/s0140-6736(86)91043-3.
Collett PW, Perry C, Engel LA. Pressure-time product, flow, and oxygen cost of resistive breathing in humans. J Appl Physiol (1985). 1985 Apr;58(4):1263-72. doi: 10.1152/jappl.1985.58.4.1263.
KRIEGER I, WHITTEN CF. WORK OF RESPIRATION IN BRONCHIOLITIS. Am J Dis Child. 1964 Apr;107:386-92. doi: 10.1001/archpedi.1964.02080060388010. No abstract available.
Stokes GM, Milner AD, Groggins RC. Work of breathing, intra-thoracic pressure and clinical findings in a group of babies with bronchiolitis. Acta Paediatr Scand. 1981 Sep;70(5):689-94. doi: 10.1111/j.1651-2227.1981.tb05769.x.
Allen JL, Wolfson MR, McDowell K, Shaffer TH. Thoracoabdominal asynchrony in infants with airflow obstruction. Am Rev Respir Dis. 1990 Feb;141(2):337-42. doi: 10.1164/ajrccm/141.2.337.
Mayfield S, Bogossian F, O'Malley L, Schibler A. High-flow nasal cannula oxygen therapy for infants with bronchiolitis: pilot study. J Paediatr Child Health. 2014 May;50(5):373-8. doi: 10.1111/jpc.12509. Epub 2014 Feb 25.
Milesi C, Baleine J, Matecki S, Durand S, Combes C, Novais AR, Cambonie G. Is treatment with a high flow nasal cannula effective in acute viral bronchiolitis? A physiologic study. Intensive Care Med. 2013 Jun;39(6):1088-94. doi: 10.1007/s00134-013-2879-y. Epub 2013 Mar 14.
Rubin S, Ghuman A, Deakers T, Khemani R, Ross P, Newth CJ. Effort of breathing in children receiving high-flow nasal cannula. Pediatr Crit Care Med. 2014 Jan;15(1):1-6. doi: 10.1097/PCC.0000000000000011.
Ritchie JE, Williams AB, Gerard C, Hockey H. Evaluation of a humidified nasal high-flow oxygen system, using oxygraphy, capnography and measurement of upper airway pressures. Anaesth Intensive Care. 2011 Nov;39(6):1103-10. doi: 10.1177/0310057X1103900620.
Lampland AL, Plumm B, Meyers PA, Worwa CT, Mammel MC. Observational study of humidified high-flow nasal cannula compared with nasal continuous positive airway pressure. J Pediatr. 2009 Feb;154(2):177-82. doi: 10.1016/j.jpeds.2008.07.021. Epub 2008 Aug 30.
Glezen P, Denny FW. Epidemiology of acute lower respiratory disease in children. N Engl J Med. 1973 Mar 8;288(10):498-505. doi: 10.1056/NEJM197303082881005. No abstract available.
Hartling L, Bialy LM, Vandermeer B, Tjosvold L, Johnson DW, Plint AC, Klassen TP, Patel H, Fernandes RM. Epinephrine for bronchiolitis. Cochrane Database Syst Rev. 2011 Jun 15;(6):CD003123. doi: 10.1002/14651858.CD003123.pub3.
Gadomski AM, Scribani MB. Bronchodilators for bronchiolitis. Cochrane Database Syst Rev. 2014 Jun 17;2014(6):CD001266. doi: 10.1002/14651858.CD001266.pub4.
Numa AH, Williams GD, Dakin CJ. The effect of nebulized epinephrine on respiratory mechanics and gas exchange in bronchiolitis. Am J Respir Crit Care Med. 2001 Jul 1;164(1):86-91. doi: 10.1164/ajrccm.164.1.2008090.
Sanchez I, De Koster J, Powell RE, Wolstein R, Chernick V. Effect of racemic epinephrine and salbutamol on clinical score and pulmonary mechanics in infants with bronchiolitis. J Pediatr. 1993 Jan;122(1):145-51. doi: 10.1016/s0022-3476(05)83508-5.
Willson DF, Horn SD, Hendley JO, Smout R, Gassaway J. Effect of practice variation on resource utilization in infants hospitalized for viral lower respiratory illness. Pediatrics. 2001 Oct;108(4):851-5. doi: 10.1542/peds.108.4.851.
Green M, Brayer AF, Schenkman KA, Wald ER. Duration of hospitalization in previously well infants with respiratory syncytial virus infection. Pediatr Infect Dis J. 1989 Sep;8(9):601-5. doi: 10.1097/00006454-198909000-00007.
Wang EE, Law BJ, Stephens D. Pediatric Investigators Collaborative Network on Infections in Canada (PICNIC) prospective study of risk factors and outcomes in patients hospitalized with respiratory syncytial viral lower respiratory tract infection. J Pediatr. 1995 Feb;126(2):212-9. doi: 10.1016/s0022-3476(95)70547-3.
Related Links
Access external resources that provide additional context or updates about the study.
Study Results: The Relationship between High Flow Nasal Cannula Flow Rate and Effort of Breathing in Children
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
CHLA-14-00239
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.