Clinical Tests to Predict the Success of Assisted Reproductive Techniques

NCT ID: NCT02437578

Last Updated: 2019-03-26

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

542 participants

Study Classification

OBSERVATIONAL

Study Start Date

2015-05-31

Study Completion Date

2019-03-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Today, it is evident that vitamin D has more widespread effects than the classical actions related to bone mineralization and calcium homeostasis. Vitamin D deficiency results in impaired reproductive performance in various species of animals, and recently the investigators have shown that the Vitamin D receptor (VDR), activating (CYP2R1, CYP27A1, CYP27B1) and inactivating (CYP24A1) enzymes are expressed in the human testis, epididymis, seminal vesicle, prostate and spermatozoa. Functional studies showed that activated vitamin D increases intracellular calcium and sperm motility in mature spermatozoa, and hence may be important not only for spermatogenesis but also for sperm function. Any test that might assist in guiding the treatment of the infertile couple would be beneficial both for most infertile couples and the society in general. The fact that vitamin D may play a role for human semen quality are now being tested clinically. If vitamin D supplementation proves efficient this opens for the first time for a causal, safe and cheap treatment of at least some cases of "idiopathic" impaired semen quality. This may also have consequences in the in vitro setting as activated vitamin D may be used to select high quality sperm during assisted reproductive techniques. The presence of the vitamin D receptor and vitamin D metabolizing enzyme CYP24A1 in particular is able to discriminate spermatozoa from normal and infertile men. CYP24A1 is expressed at the annulus of normal sperm, but it is virtually absent from spermatozoa from infertile men. This indicates that CYP24A1 expression may assist in predicting the chance of success by using insemination (IUI), IVF or ICSI. CYP24A1 expression is induced by activated vitamin D, which indicates that other VDR activated genes also may serve as positive predictive markers of fertility. In addition, vitamin D metabolites and other factors in the female reproductive tract will be measured to determine if they alone or in combination with other markers can determine whether the best solution for the infertile couple would be to do IUI, IVF, or ICSI. The suggested clinical trial may therefore be able to evaluate several secondary endpoints in addition to CYP24A1 in our search for predictive markers for fertilization. For instance several biomarkers in serum, seminal plasma or follicular fluid in conjunction with genetic polymorphisms in several genes important for reproductive function.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Background Today, it is evident that vitamin D has more widespread effects than the classical actions related to bone mineralization and calcium homeostasis. Vitamin D deficiency results in impaired reproductive performance in various species of animals, and recently the investigators have shown that the vitamin D receptor (VDR), activating (CYP2R1, CYP27A1, CYP27B1) and inactivating (CYP24A1) enzymes are expressed in the human testis, epididymis, seminal vesicle, prostate and spermatozoa. Functional studies showed that activated vitamin D increases intracellular calcium and sperm motility in mature spermatozoa, and hence may be important not only for spermatogenesis but also for sperm function. A cross sectional study of 300 young healthy Danish men showed that men with lower levels of serum 25-hydroxyvitamin D have significantly lower number of normally developed and motile spermatozoa. Hitherto, most cases of male infertility have been classified as "idiopathic", and infertile couples have been referred to symptomatic treatment at infertility clinics. These fertility treatments are often physically demanding for the female partner as well as expensive for the health care system. Any test that might assist in guiding the treatment of the infertile couple would be beneficial both for the infertile couples and the society in general. Our findings that vitamin D may play a role for human semen quality are now being tested clinically. If vitamin D supplementation proves efficient this opens for the first time for a causal, safe and cheap treatment of at least some cases of "idiopathic" impaired semen quality. This may have consequences as vitamin D may be used to select high quality sperm during assisted reproductive techniques. The presence of the vitamin D receptor and vitamin D metabolizing enzymes in a particular CYP24A1 is able to discriminate sperm from normal and infertile men. CYP24A1 is expressed at the annulus of normal sperm but is virtually absent from spermatozoa from infertile men. This indicates that CYP24A1 may be used as a marker to discriminate between good and unhealthy sperm and may therefore serve as a predictive clinical marker for fertility. This indicates that CYP24A1 expression also may assist in predicting the chance of success by using insemination (IUI), IVF or ICSI. CYP24A1 expression is induced by activated vitamin D through the VDR, which indicates that other VDR activated genes also may serve as positive predictive markers of fertility.

In addition to the simple use of VDR, CYP24A1 and other vitamin D regulated genes in human sperm as clinical markers, it is also important to determine the function of vitamin D in reproduction. In order to understand this, it is important to determine the concentration of vitamin D metabolites in the male and female reproductive tract. For instance if vitamin D metabolites are undetectable in the male reproductive tract but measurable in the female reproductive tract then it may be important for signaling to the capacitated (activated) spermatozoa. The different vitamin D metabolites and other factors in the female reproductive tract will be measured to determine if they alone or in combinaton with other markers may be good predictors of the success following IUI, IVF, or ICSI treatment. The suggested clinical trial may therefore be able to evaluate several secondary endpoints in addition to CYP24A1 in our search for predictive markers for fertilization. For instance several biomarkers in serum, seminal plasma or follicular fluid in conjunction with known polymorphisms in several genes important for reproductive function. For instance genetic variation in FSH signaling. Single nucleotide polymorphisms (SNPs) related to genes encoding the FSHβ subunit (FSHB) and the FSH receptor (FSHR) affect FSH production (FSHB c.-211 G\>T) and sensitivity/expression of its receptor in vitro (FSHR c.2039A\>G \& FSHR c.-29G\>A). FSHR c.2039A\>G, but not FSHR c.-29G\>A, is associated with increased FSH levels in adult women, while there are conflicting results on FSHB c.-211 G\>T (7;8). May these polymorphisms and other specific polymorphisms affect male and female fertility potential, semen quality and reproductive hormones.

SETTING, SCIENTIFIC PLAN AND RECRUITMENT Participants will be included among infertile couples referred for IUI, IVF or ICSI at Dansk fertilitetsklinik. The design is a prospective, blinded, single center cohort study. The investigation of all samples will be blinded since investigators have no information about the clinical data, treatment failure/succes. all participants will be followed until 9 months after their treatment to evaluate live birth rate, abortions etc.

PARTICIPANTS All referred infertile couples will be invited to participate, however both partners should be \> 18 years and the women \< 43 years old. women using donorinsemination will also be included. Anticipated 800-1000 IUI and 400 IVF/ICSI will be conducted at the clinic in the study period. The investigators assume that up to 600 IUI and 200 IVF/ICSI wish to participate. Thus, 800 treatments is the target for inclusion in the study. The investigators expect a small retraction rate (\< 20) because of high motivation and no adverse effects.

ANALYSIS Reproductive hormones, genetic analyses, endocrine disrupters and growth factors will be analyzed at dept. of GR,Rigshospitalet and calcium regulators including vitamin D metabolites at Holbæk hospital.

SAMPLE SIZE CALCULATION AND STATISTICS The power estimate is based on the published data on CYP24A1 as a positive marker of semen quality. The association between clinical pregnancy and CYP24A1 is estimated to be comparable with the association with sperm motility. This imply that N=600 IUI will be enough to evaluate the effect of CYP24A1 as a marker of pregnancy and live birth rate because the investigators estimate that at least 12% will have a positive pregnancy test. When the inital collection of raw semen/percoll separated sperm and data have been completed an additional amount of clinical observations will be obtained after 9 months on live birth rate, abortions etc. Secondary analyses on the putative association between clinical endpoints and the expression of VDR and other Vitamin D regulated genesin sperm will be investigated on a randomly selected subset of samples N=300. All the listed genetic analyses will be conducted on all men and all the women with DNA. Follicular fluid will be collected during IVF or ICSI when there is no contamination with blood. Analyses of different markers in the follicular fluid and cells will be associated with oocyte quality, pregnancy and live birth rate.

ETHICS AND SIDE EFFECTS All the patients will have finished their inital visit and investigations, before they are invited to participate in the study. The loss of spermatozoa for each man as a result of making the cytospin will not influence the successrate of IUI, IVF or ICSI because the investigators will take less than 2.5% of the sperm pool.

PUBLICATION OF RESULTS All results, positive or negative will be submitted to peer reviewed scientific journals. Data will successively be obtained and transferred to a statistical database.

Predefined subgroup analyses Female age, sperm concentration, TTP, BMI, expression of CYP24A1/VDR in sperm, raw semen verus percoll separated, serum vitamin D levels and the listed genetic polymorphisms under secondary endpoints.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Infertility

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Infertile couples

Infertile couples referred to Dansk fertilitetsklinik (Danish Fertility clinic) for IUI, IVF and ICSI treatment

No interventions assigned to this group

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* part of an infertile couple
* \> 18 years of age

Exclusion Criteria

* women \>43 years of age
* men with sperm concentration \< 0.1 million/ml
Minimum Eligible Age

18 Years

Maximum Eligible Age

43 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Dansk Fertilitetsklinik

OTHER

Sponsor Role collaborator

Martin Blomberg Jensen

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Martin Blomberg Jensen

MD, DMSc

Responsibility Role SPONSOR_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Martin B Jensen, MD, DMSc

Role: STUDY_CHAIR

Rigshospitalet, Denmark

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Dansk Fertilitetsklinik

Frederiksberg, , Denmark

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Denmark

References

Explore related publications, articles, or registry entries linked to this study.

Wulff SM, Jorsal MJ, Kooij I, Krog H, Bentin-Ley U, Blomberg Jensen M, Yahyavi SK. Phosphate concentrations in follicular fluid during assisted reproductive treatment: relevance for ovarian function and fertility outcomes. Reprod Biol Endocrinol. 2025 May 14;23(1):69. doi: 10.1186/s12958-025-01408-w.

Reference Type DERIVED
PMID: 40369590 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

CBG study3

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Vitamin D in Pregnancy
NCT04291313 UNKNOWN NA
The Effect of Vitamin D on Fertility
NCT03890458 COMPLETED PHASE4