Kinematic, Kinetic, and Metabolic Comparison of Bilateral Transfemoral Ambulation With Passive Versus Powered Prosthetic Devices
NCT ID: NCT02366702
Last Updated: 2019-04-05
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
3 participants
OBSERVATIONAL
2015-02-28
2020-02-29
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Evaluation of Correlations Between Different Walk Tests in Patients With Transfemoral Amputees
NCT02766387
Metabolic Cost of Walking With Passive vs. Powered Microprocessor Controlled Knees
NCT05048355
Passive Microprocessor-controlled Knees vs. Active Microprocessor-controlled Knees After Transfemoral Amputation
NCT06406491
The Effect of Microprocessor Controlled Prostheses on Walking Pattern and Energy Consumption
NCT05786690
Assessment of Disability Compensation With the C-LEG COMPACT 2 Knee (Ref. 3C60 et 3C60=ST)
NCT02382991
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CROSSOVER
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Individuals with Bilateral Transfemoral Amputation
Lower Limb Powered Knee-Ankle Prosthesis
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Lower Limb Powered Knee-Ankle Prosthesis
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* All causes of limb amputation: congenital, trauma, vascular, limb salvage, infection.
* All transfemoral residual limb lengths: joint disarticulation, long, medium, short, very short.
* Subjects currently walk with entirely passive type prostheses daily.
* Subjects walk without assistive devices OR with single point cane.
* High-activity level walkers
Exclusion Criteria
* Medical comorbidities or existing conditions that may impede the subjects ability to complete the protocol excluding the amputations.
* Current medications or pharmaceutical interventions that may impede the subjects ability to complete the protocol.
* Any powered prosthetic component or prosthesis, including but not exclusive to: Ossur Proprio Foot, BiOM or BiOM T2 System Foot, Ossur Power Knee, Ossur Symbionic Leg.
* Subjects requiring a walker, crutches, quad cane, or other assistive devices excluding a single point cane.
* Low-activity level walkers
18 Years
45 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Vanderbilt University
OTHER
Southern California Institute for Research and Education
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Dana Craig
Health System Specialist
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Michael Goldfarb, Ph.D.
Role: PRINCIPAL_INVESTIGATOR
Vanderbilt University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
VA Long Beach Healthcare System
Long Beach, California, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008 Mar;89(3):422-9. doi: 10.1016/j.apmr.2007.11.005.
Adams PF, Hendershot GE, Marano MA; Centers for Disease Control and Prevention/National Center for Health Statistics. Current estimates from the National Health Interview Survey, 1996. Vital Health Stat 10. 1999 Oct;(200):1-203.
Feinglass J, Brown JL, LoSasso A, Sohn MW, Manheim LM, Shah SJ, Pearce WH. Rates of lower-extremity amputation and arterial reconstruction in the United States, 1979 to 1996. Am J Public Health. 1999 Aug;89(8):1222-7. doi: 10.2105/ajph.89.8.1222.
Dougherty PJ, McFarland LV, Smith DG, Reiber GE. Combat-incurred bilateral transfemoral limb loss: a comparison of the Vietnam War to the wars in Afghanistan and Iraq. J Trauma Acute Care Surg. 2012 Dec;73(6):1590-5. doi: 10.1097/TA.0b013e318265fe64.
Kurdibaylo SF. Obesity and metabolic disorders in adults with lower limb amputation. J Rehabil Res Dev. 1996 Oct;33(4):387-94.
Wu YJ, Chen SY, Lin MC, Lan C, Lai JS, Lien IN. Energy expenditure of wheeling and walking during prosthetic rehabilitation in a woman with bilateral transfemoral amputations. Arch Phys Med Rehabil. 2001 Feb;82(2):265-9. doi: 10.1053/apmr.2001.19019.
Su PF, Gard SA, Lipschutz RD, Kuiken TA. Gait characteristics of persons with bilateral transtibial amputations. J Rehabil Res Dev. 2007;44(4):491-501. doi: 10.1682/jrrd.2006.10.0135.
Martinez-Villalpando EC, Herr H. Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking. J Rehabil Res Dev. 2009;46(3):361-73.
Hoffman MD, Sheldahl LM, Buley KJ, Sandford PR. Physiological comparison of walking among bilateral above-knee amputee and able-bodied subjects, and a model to account for the differences in metabolic cost. Arch Phys Med Rehabil. 1997 Apr;78(4):385-92. doi: 10.1016/s0003-9993(97)90230-6.
Quintero HA, Farris RJ, Ha K, Goldfarb M. Preliminary assessment of the efficacy of supplementing knee extension capability in a lower limb exoskeleton with FES. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3360-3. doi: 10.1109/EMBC.2012.6346685.
Lawson BE, Huff A, Goldfarb M. A preliminary investigation of powered prostheses for improved walking biomechanics in bilateral transfemoral amputees. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4164-7. doi: 10.1109/EMBC.2012.6346884.
Highsmith, M. J., Kahle, J. T., Carey, S. L., Lura, D. J., Dubey, R. V., & Quillen, W. S. (2010). Kinetic differences using a power knee and C-Leg while sitting down and standing up: a case report. JPO: Journal of Prosthetics and Orthotics, 22(4), 237-243
Wolf, E. J., & Pruziner, A. L. (2014). Use of a Powered Versus a Passive Prosthetic System for a Person with Bilateral Amputations during Level-Ground Walking. JPO: Journal of Prosthetics and Orthotics, 26(3), 166-170
Wolf EJ, Everding VQ, Linberg AA, Czerniecki JM, Gambel JM. Comparison of the Power Knee and C-Leg during step-up and sit-to-stand tasks. Gait Posture. 2013 Jul;38(3):397-402. doi: 10.1016/j.gaitpost.2013.01.007. Epub 2013 Jan 30.
Barr AE, Siegel KL, Danoff JV, McGarvey CL 3rd, Tomasko A, Sable I, Stanhope SJ. Biomechanical comparison of the energy-storing capabilities of SACH and Carbon Copy II prosthetic feet during the stance phase of gait in a person with below-knee amputation. Phys Ther. 1992 May;72(5):344-54. doi: 10.1093/ptj/72.5.344.
Barth, D. G., Schumacher, L., & Thomas, S. S. (1992). Gait analysis and energy cost of below-knee amputees wearing six different prosthetic feet. JPO: Journal of Prosthetics and Orthotics, 4(2), 63-75
Snyder RD, Powers CM, Fontaine C, Perry J. The effect of five prosthetic feet on the gait and loading of the sound limb in dysvascular below-knee amputees. J Rehabil Res Dev. 1995 Nov;32(4):309-15.
Versluys R, Beyl P, Van Damme M, Desomer A, Van Ham R, Lefeber D. Prosthetic feet: state-of-the-art review and the importance of mimicking human ankle-foot biomechanics. Disabil Rehabil Assist Technol. 2009 Mar;4(2):65-75. doi: 10.1080/17483100802715092.
Hitt, J. K., Sugar, T. G., Holgate, M., & Bellman, R. (2010). An active foot-ankle prosthesis with biomechanical energy regeneration. Journal of medical devices,4(1), 011003
Delussu AS, Brunelli S, Paradisi F, Iosa M, Pellegrini R, Zenardi D, Traballesi M. Assessment of the effects of carbon fiber and bionic foot during overground and treadmill walking in transtibial amputees. Gait Posture. 2013 Sep;38(4):876-82. doi: 10.1016/j.gaitpost.2013.04.009. Epub 2013 May 21.
Ferris AE, Aldridge JM, Rabago CA, Wilken JM. Evaluation of a powered ankle-foot prosthetic system during walking. Arch Phys Med Rehabil. 2012 Nov;93(11):1911-8. doi: 10.1016/j.apmr.2012.06.009. Epub 2012 Jun 22.
Sup, F., Bohara, A., & Goldfarb, M. (2007, April). Design and control of a powered knee and ankle prosthesis. In Robotics and Automation, 2007 IEEE International Conference on (pp. 4134-4139). IEEE
Sup F, Varol HA, Mitchell J, Withrow TJ, Goldfarb M. Self-Contained Powered Knee and Ankle Prosthesis: Initial Evaluation on a Transfemoral Amputee. IEEE Int Conf Rehabil Robot. 2009 Jun 23;2009:638-644. doi: 10.1109/ICORR.2009.5209625.
McNealy LL, Gard SA. Effect of prosthetic ankle units on the gait of persons with bilateral trans-femoral amputations. Prosthet Orthot Int. 2008 Mar;32(1):111-26. doi: 10.1080/02699200701847244.
Gao F, Zhang F, Huang H. Investigation of sit-to-stand and stand-to-sit in an above knee amputee. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7340-3. doi: 10.1109/IEMBS.2011.6091712.
Schmalz T, Blumentritt S, Marx B. Biomechanical analysis of stair ambulation in lower limb amputees. Gait Posture. 2007 Feb;25(2):267-78. doi: 10.1016/j.gaitpost.2006.04.008. Epub 2006 May 24.
Vrieling AH, van Keeken HG, Schoppen T, Otten E, Halbertsma JP, Hof AL, Postema K. Uphill and downhill walking in unilateral lower limb amputees. Gait Posture. 2008 Aug;28(2):235-42. doi: 10.1016/j.gaitpost.2007.12.006. Epub 2008 Feb 1.
Perry, J., Burnfield, J. M., & Cabico, L. M. (2010). Gait analysis: Normal and pathological function. Thorofare, NJ: SLACK
Wolf SI, Alimusaj M, Fradet L, Siegel J, Braatz F. Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot. Clin Biomech (Bristol). 2009 Dec;24(10):860-5. doi: 10.1016/j.clinbiomech.2009.08.007. Epub 2009 Sep 9.
Fradet L, Alimusaj M, Braatz F, Wolf SI. Biomechanical analysis of ramp ambulation of transtibial amputees with an adaptive ankle foot system. Gait Posture. 2010 Jun;32(2):191-8. doi: 10.1016/j.gaitpost.2010.04.011. Epub 2010 May 8.
Alimusaj M, Fradet L, Braatz F, Gerner HJ, Wolf SI. Kinematics and kinetics with an adaptive ankle foot system during stair ambulation of transtibial amputees. Gait Posture. 2009 Oct;30(3):356-63. doi: 10.1016/j.gaitpost.2009.06.009. Epub 2009 Jul 17.
Miller WC, Deathe AB, Speechley M. Lower extremity prosthetic mobility: a comparison of 3 self-report scales. Arch Phys Med Rehabil. 2001 Oct;82(10):1432-40. doi: 10.1053/apmr.2001.25987.
Torburn L, Powers CM, Guiterrez R, Perry J. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet. J Rehabil Res Dev. 1995 May;32(2):111-9.
Schmalz T, Blumentritt S, Jarasch R. Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture. 2002 Dec;16(3):255-63. doi: 10.1016/s0966-6362(02)00008-5.
Nolan L, Lees A. The functional demands on the intact limb during walking for active trans-femoral and trans-tibial amputees. Prosthet Orthot Int. 2000 Aug;24(2):117-25. doi: 10.1080/03093640008726534.
Frossard L, Cheze L, Dumas R. Dynamic input to determine hip joint moments, power and work on the prosthetic limb of transfemoral amputees: ground reaction vs knee reaction. Prosthet Orthot Int. 2011 Jun;35(2):140-9. doi: 10.1177/0309364611409002.
Ayyappa, E. (1997). Normal human locomotion, part 1: Basic concepts and terminology. JPO: Journal of Prosthetics and Orthotics, 9(1), 10-17
Ayyappa, E. (1997). Normal human locomotion, Part 2: Motion, ground-reaction force and muscle activity. JPO: Journal of Prosthetics and Orthotics, 9(2), 49-57
Waters RL, Perry J, Antonelli D, Hislop H. Energy cost of walking of amputees: the influence of level of amputation. J Bone Joint Surg Am. 1976 Jan;58(1):42-6.
Hughes J, Jacobs N. Normal human locomotion. Prosthet Orthot Int. 1979 Apr;3(1):4-12. doi: 10.3109/03093647909164693.
Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990 May;8(3):383-92. doi: 10.1002/jor.1100080310.
Darter BJ, Wilken JM. Energetic consequences of using a prosthesis with adaptive ankle motion during slope walking in persons with a transtibial amputation. Prosthet Orthot Int. 2014 Feb;38(1):5-11. doi: 10.1177/0309364613481489. Epub 2013 Mar 22.
Biswas, D., Roy, S., Lenka, P. K., & Kumar, R. (2010). Energy Cost and Gait Efficiency of Below-Knee Amputee and Normal Subject with Similar Physical Parameters & Quality of Life: A Comparative Case Study. Online Journal of Health and Allied Sciences, 9(3)
Mohanty RK, Lenka P, Equebal A, Kumar R. Comparison of energy cost in transtibial amputees using "prosthesis" and "crutches without prosthesis" for walking activities. Ann Phys Rehabil Med. 2012 May;55(4):252-62. doi: 10.1016/j.rehab.2012.02.006. Epub 2012 Apr 10. English, French.
Cutti, A. G., Raggi, M., Garofalo, P., Giovanardi, A., Filippi, M. V., & Davalli, A. (2008). The effects of the 'Power Knee'prosthesis on amputees metabolic cost of walking and symmetry of gait-Preliminary results. Gait & Posture, 28, S38
Herr HM, Grabowski AM. Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation. Proc Biol Sci. 2012 Feb 7;279(1728):457-64. doi: 10.1098/rspb.2011.1194. Epub 2011 Jul 13.
Chin T, Sawamura S, Shiba R. Effect of physical fitness on prosthetic ambulation in elderly amputees. Am J Phys Med Rehabil. 2006 Dec;85(12):992-6. doi: 10.1097/01.phm.0000247653.11780.0b.
A. Cunha, E. Caetano, P. Ribeiro, G. Müller (eds.) Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014. Porto, Portugal, 30 June - 2 July 2014
Brockway JM. Derivation of formulae used to calculate energy expenditure in man. Hum Nutr Clin Nutr. 1987 Nov;41(6):463-71.
Schneider K, Hart T, Zernicke RF, Setoguchi Y, Oppenheim W. Dynamics of below-knee child amputee gait: SACH foot versus Flex foot. J Biomech. 1993 Oct;26(10):1191-204. doi: 10.1016/0021-9290(93)90067-o.
Simon AM, Ingraham KA, Fey NP, Finucane SB, Lipschutz RD, Young AJ, Hargrove LJ. Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes. PLoS One. 2014 Jun 10;9(6):e99387. doi: 10.1371/journal.pone.0099387. eCollection 2014.
Lawson BE, Ruhe B, Shultz A, Goldfarb M. A powered prosthetic intervention for bilateral transfemoral amputees. IEEE Trans Biomed Eng. 2015 Apr;62(4):1042-50. doi: 10.1109/TBME.2014.2334616. Epub 2014 Jul 2.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
01329
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.