Preventive Effects of Cetylpyridinium Chloride on SarcopeniaStudy
NCT ID: NCT02297997
Last Updated: 2021-03-29
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
EARLY_PHASE1
65 participants
INTERVENTIONAL
2014-11-13
2015-11-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Clinical Trial to Assess the Preventive Effects of Cetylpyridinium Chloride on Sarcopenia
NCT02575235
Effect of Ishige Okamurae Extract on Musculoskeletal Biomarkers in Adults With Relative Sarcopenia
NCT04617951
Krill Oil and Muscle in Older Adults
NCT04048096
β-glucan and Exercise on Musculoskeletal Function in Sarcopenic Adults
NCT06629805
Effect of Aureobasidium Pullulans Produced β-glucan on Musculoskeletal Biomarkers in Adults With Relative Sarcopenia
NCT05106686
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
PREVENTION
QUADRUPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
1.5mg Cetylpyridinium Chloride
Cetylpyridinium chloride of 1.5mg will be taken daily for two weeks.
cetylpyridinium chloride
Four study groups take cetylpyridinium chloride of 1.5mg, 3mg, 4.5mg and 6mg daily for two weeks.
3mg Cetylpyridinium Chloride
Cetylpyridinium chloride of 3mg will be taken daily for two weeks.
cetylpyridinium chloride
Four study groups take cetylpyridinium chloride of 1.5mg, 3mg, 4.5mg and 6mg daily for two weeks.
4.5mg Cetylpyridinium Chloride
Cetylpyridinium chloride of 4.5mg will be taken daily for two weeks.
cetylpyridinium chloride
Four study groups take cetylpyridinium chloride of 1.5mg, 3mg, 4.5mg and 6mg daily for two weeks.
6mg Cetylpyridinium Chloride
Cetylpyridinium chloride of 6mg will be taken daily for two weeks.
cetylpyridinium chloride
Four study groups take cetylpyridinium chloride of 1.5mg, 3mg, 4.5mg and 6mg daily for two weeks.
Control
Placebo will be taken daily for two weeks.
Placebo
Control group takes the placebo for the same period.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
cetylpyridinium chloride
Four study groups take cetylpyridinium chloride of 1.5mg, 3mg, 4.5mg and 6mg daily for two weeks.
Placebo
Control group takes the placebo for the same period.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Community dwelling
Exclusion Criteria
* Artificial joint
* Acute disease or unstable chronic disease
* Phenylketonuria
* History of myocardiac infarction
* Allergic contact dermatitis
* History of drug/alcohol addiction, habitual smoker
60 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Seoul National University Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Sun Gun Chung
Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Sun Gun Chung, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
Seoul National University College of Medicine
References
Explore related publications, articles, or registry entries linked to this study.
Pahor M, Manini T, Cesari M. Sarcopenia: clinical evaluation, biological markers and other evaluation tools. J Nutr Health Aging. 2009 Oct;13(8):724-8. doi: 10.1007/s12603-009-0204-9.
Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002 May;50(5):889-96. doi: 10.1046/j.1532-5415.2002.50216.x.
Hong S, Oh HJ, Choi H, Kim JG, Lim SK, Kim EK, Pyo EY, Oh K, Kim YT, Wilson K, Choi WH. Characteristics of body fat, body fat percentage and other body composition for Koreans from KNHANES IV. J Korean Med Sci. 2011 Dec;26(12):1599-605. doi: 10.3346/jkms.2011.26.12.1599. Epub 2011 Nov 29.
Kalyani RR, Corriere M, Ferrucci L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014 Oct;2(10):819-29. doi: 10.1016/S2213-8587(14)70034-8. Epub 2014 Mar 6.
Ormsbee MJ, Prado CM, Ilich JZ, Purcell S, Siervo M, Folsom A, Panton L. Osteosarcopenic obesity: the role of bone, muscle, and fat on health. J Cachexia Sarcopenia Muscle. 2014 Sep;5(3):183-92. doi: 10.1007/s13539-014-0146-x. Epub 2014 Apr 17.
Moller N, Vendelbo MH, Kampmann U, Christensen B, Madsen M, Norrelund H, Jorgensen JO. Growth hormone and protein metabolism. Clin Nutr. 2009 Dec;28(6):597-603. doi: 10.1016/j.clnu.2009.08.015. Epub 2009 Sep 20.
Miller MD, Crotty M, Giles LC, Bannerman E, Whitehead C, Cobiac L, Daniels LA, Andrews G. Corrected arm muscle area: an independent predictor of long-term mortality in community-dwelling older adults? J Am Geriatr Soc. 2002 Jul;50(7):1272-7. doi: 10.1046/j.1532-5415.2002.50316.x.
Enoki H, Kuzuya M, Masuda Y, Hirakawa Y, Iwata M, Hasegawa J, Izawa S, Iguchi A. Anthropometric measurements of mid-upper arm as a mortality predictor for community-dwelling Japanese elderly: the Nagoya Longitudinal Study of Frail Elderly (NLS-FE). Clin Nutr. 2007 Oct;26(5):597-604. doi: 10.1016/j.clnu.2007.06.008. Epub 2007 Jul 31.
Stephen WC, Janssen I. Sarcopenic-obesity and cardiovascular disease risk in the elderly. J Nutr Health Aging. 2009 May;13(5):460-6. doi: 10.1007/s12603-009-0084-z.
Rolland Y, Czerwinski S, Abellan Van Kan G, Morley JE, Cesari M, Onder G, Woo J, Baumgartner R, Pillard F, Boirie Y, Chumlea WM, Vellas B. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging. 2008 Aug-Sep;12(7):433-50. doi: 10.1007/BF02982704.
Landi F, Marzetti E, Martone AM, Bernabei R, Onder G. Exercise as a remedy for sarcopenia. Curr Opin Clin Nutr Metab Care. 2014 Jan;17(1):25-31. doi: 10.1097/MCO.0000000000000018.
Adamo ML, Farrar RP. Resistance training, and IGF involvement in the maintenance of muscle mass during the aging process. Ageing Res Rev. 2006 Aug;5(3):310-31. doi: 10.1016/j.arr.2006.05.001. Epub 2006 Sep 1.
Morley JE, Malmstrom TK. Frailty, sarcopenia, and hormones. Endocrinol Metab Clin North Am. 2013 Jun;42(2):391-405. doi: 10.1016/j.ecl.2013.02.006.
Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, Morton RA, Steiner MS. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle. 2011 Sep;2(3):153-161. doi: 10.1007/s13539-011-0034-6. Epub 2011 Aug 2.
White HK, Petrie CD, Landschulz W, MacLean D, Taylor A, Lyles K, Wei JY, Hoffman AR, Salvatori R, Ettinger MP, Morey MC, Blackman MR, Merriam GR; Capromorelin Study Group. Effects of an oral growth hormone secretagogue in older adults. J Clin Endocrinol Metab. 2009 Apr;94(4):1198-206. doi: 10.1210/jc.2008-0632. Epub 2009 Jan 27.
Kuang S, Rudnicki MA. The emerging biology of satellite cells and their therapeutic potential. Trends Mol Med. 2008 Feb;14(2):82-91. doi: 10.1016/j.molmed.2007.12.004. Epub 2008 Jan 22.
Kunkel SD, Elmore CJ, Bongers KS, Ebert SM, Fox DK, Dyle MC, Bullard SA, Adams CM. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease. PLoS One. 2012;7(6):e39332. doi: 10.1371/journal.pone.0039332. Epub 2012 Jun 20.
Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM. AMPK and PPARdelta agonists are exercise mimetics. Cell. 2008 Aug 8;134(3):405-15. doi: 10.1016/j.cell.2008.06.051. Epub 2008 Jul 31.
Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009 Jul 16;460(7253):392-5. doi: 10.1038/nature08221. Epub 2009 Jul 8.
Potsch MS, Tschirner A, Palus S, von Haehling S, Doehner W, Beadle J, Coats AJ, Anker SD, Springer J. The anabolic catabolic transforming agent (ACTA) espindolol increases muscle mass and decreases fat mass in old rats. J Cachexia Sarcopenia Muscle. 2014 Jun;5(2):149-58. doi: 10.1007/s13539-013-0125-7. Epub 2013 Nov 22.
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M; European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010 Jul;39(4):412-23. doi: 10.1093/ageing/afq034. Epub 2010 Apr 13.
Chien MY, Huang TY, Wu YT. Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community-dwelling elderly people in Taiwan. J Am Geriatr Soc. 2008 Sep;56(9):1710-5. doi: 10.1111/j.1532-5415.2008.01854.x. Epub 2008 Aug 6.
Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, Lee JS, Lee WJ, Lee Y, Liang CK, Limpawattana P, Lin CS, Peng LN, Satake S, Suzuki T, Won CW, Wu CH, Wu SN, Zhang T, Zeng P, Akishita M, Arai H. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014 Feb;15(2):95-101. doi: 10.1016/j.jamda.2013.11.025.
Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, Corsi AM, Rantanen T, Guralnik JM, Ferrucci L. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol (1985). 2003 Nov;95(5):1851-60. doi: 10.1152/japplphysiol.00246.2003.
Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, Studenski S, Berkman LF, Wallace RB. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000 Apr;55(4):M221-31. doi: 10.1093/gerona/55.4.m221.
Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008 Mar;22(3):659-61. doi: 10.1096/fj.07-9574LSF. Epub 2007 Oct 17.
Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA; Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001 Mar;56(3):M146-56. doi: 10.1093/gerona/56.3.m146.
Bhasin S, He EJ, Kawakubo M, Schroeder ET, Yarasheski K, Opiteck GJ, Reicin A, Chen F, Lam R, Tsou JA, Castaneda-Sceppa C, Binder EF, Azen SP, Sattler FR. N-terminal propeptide of type III procollagen as a biomarker of anabolic response to recombinant human GH and testosterone. J Clin Endocrinol Metab. 2009 Nov;94(11):4224-33. doi: 10.1210/jc.2009-1434. Epub 2009 Oct 16.
Chen F, Lam R, Shaywitz D, Hendrickson RC, Opiteck GJ, Wishengrad D, Liaw A, Song Q, Stewart AJ, Cummings CE, Beals C, Yarasheski KE, Reicin A, Ruddy M, Hu X, Yates NA, Menetski J, Herman GA. Evaluation of early biomarkers of muscle anabolic response to testosterone. J Cachexia Sarcopenia Muscle. 2011 Mar;2(1):45-56. doi: 10.1007/s13539-011-0021-y. Epub 2011 Feb 26.
Moerman DE, Jonas WB. Deconstructing the placebo effect and finding the meaning response. Ann Intern Med. 2002 Mar 19;136(6):471-6. doi: 10.7326/0003-4819-136-6-200203190-00011.
Lopez-Gomez M, Corona T, Diaz-Ruiz A, Rios C. Safety and tolerability of dapsone for the treatment of patients with drug-resistant, partial-onset seizures: an open-label trial. Neurol Sci. 2011 Dec;32(6):1063-7. doi: 10.1007/s10072-011-0612-6. Epub 2011 May 17.
Damodar S, Viswabandya A, George B, Mathews V, Chandy M, Srivastava A. Dapsone for chronic idiopathic thrombocytopenic purpura in children and adults--a report on 90 patients. Eur J Haematol. 2005 Oct;75(4):328-31. doi: 10.1111/j.1600-0609.2005.00545.x.
Sharquie KE, Najim RA, Abu-Raghif AR. Dapsone in Behcet's disease: a double-blind, placebo-controlled, cross-over study. J Dermatol. 2002 May;29(5):267-79. doi: 10.1111/j.1346-8138.2002.tb00263.x.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
SNUHRM
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.