Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
30 participants
INTERVENTIONAL
2014-09-30
2015-07-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The aims of the present study were:
1. Comparing the changes in body composition between continuous hypoxic training (CHT) and similar training in normoxia; e.g. continuous normoxic training (CNT) in obese subjects.
2. Comparing the metabolic and energetics adaptations to CHT vs CNT.
3. Finally, comparing the associated body-loss induced gait modification since walking intensity at spontaneous walking speed (Ss) is lower in CHT than in CNT.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Optimisation of Eccentric Exercises
NCT06193824
Low-load Blood Flow Restriction Training in COPD
NCT04151771
BFR in Overweight Sedentary Subjects
NCT05371119
Effects of Inspiratory Muscle Training on Dyspnea Perception During Exercise in Patients With COPD
NCT01900873
Respiratory Muscle Endurance Training in Obese Patients
NCT01026155
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Several recent findings support the use of LLTH in obese subjects in terms of weight loss and/or cardiovascular and metabolic improvements (Kayser and Verges 2013). CHT \[low intensity endurance exercise for 90 min at 60% of the heart rate at maximum aerobic capacity, 3 d week-1 for 8 weeks; fraction of inspired oxygen (FiO2) = 15%\] in overweight subjects \[body mass index (BMI) \> 27\] lead to larger (+1.1 kg) weight loss than similar training in normoxia. However, no difference was observed regarding BMI between the training modalities (Netzer et al. 2008). In a similar way, CHT (low intensity endurance exercise for 60 min at 65% of the heart rate at maximum aerobic capacity, 3 d week-1 for 4 weeks; FiO2 = 15%) induced similar increases in maximal oxygen consumption and endurance but larger improvements in respiratory quotient and lactate at the anaerobic threshold as well as in body composition than similar training in normoxia (Wiesner et al. 2010). Of interest is that the beneficial results were obtained despite lower training workload in hypoxia. This suggests that hypoxic training intensity can be lower in absolute value, at the spontaneous walking speed (Ss), also known as preferred or self-selected speed (e.g. the speed normally used during daily living activities). This appears to be an appropriate walking intensity for weight reduction programs aimed at inducing negative energy balance (Hills et al. 2006). A lower walking intensity is also likely more protective of the muscles/joints in obese patients with orthopaedic comorbidities. Finally, CHT was also shown (Haufe et al. 2008) to lead to larger change in body fat content, triglycerides, homeostasis assessment of insulin resistance (HOMA-Index), fasting insulin and area under the curve for insulin during an oral glucose tolerance test despite the lower absolute running intensity (1.4 and 1.7 W kg-1 in hypoxia and normoxia, respectively).
The net energy cost of level walking (NCw) represents the energy expenditure per distance unit only associated with walking movements. Previous studies reported higher absolute (J·m-1) and relative (i.e., normalized by body mass: J·kg-1·m-1) NCw in obese compared with normal body mass individuals (Browning et al. 2006; Peyrot et al. 2009), suggesting that the body mass is the main, but not the only, determinant of this lower economy of walking in obese subjects and that other factors may be involved in the higher NCw in these individuals(Browning et al. 2006; Peyrot et al. 2010; Peyrot et al. 2009). If body mass loss is an important method for the treatment of obesity and its associated co-morbidities and it may also be an important to investigate the effect of decreased body mass on gait pattern and mechanical external work (Wext) and their consequences on NCw in obese individuals. Walking is a fundamental movement pattern and the most common mode of physical activity. This form of locomotion may contribute significantly to weight management in overweight and obese subjects (Hill and Peters 1998; Jakicic et al. 2003; Pollock et al. 1971). Only one study showed that body mass reduction of 7% over 3 months resulted in gait kinematic changes (i.e., increases in walking speed, stride length and frequency, swing duration and decrease in cycle time, stance and double support time) in healthy adult obese women (BMI = 37 kg·m-2) (Plewa et al. 2007). However, these authors did not measure the NCw. More recently, Peyrot et al. (Peyrot et al. 2010) reported that, in healthy adolescent obese individuals, a 12-wk voluntary body mass reduction program (-6%) induced a reduction in NCw mainly associated with decreased body mass but also with changes in the biomechanical parameters of walking \[i.e., a lesser lower limb muscle work required to rise the center of mass (CM) with Wext unchanged after intervention\]. The authors hypothesized that the relation between the changes in absolute NCw and the changes in the biomechanical parameters might be explained by an increase in efficiency of muscle mechanical work with body mass loss as previously showed in cycling (Rosenbaum et al. 2003). Others studies (Messier et al. 2005; Messier et al. 2011), investigating only the effect of body mass loss (-3% and -10%, respectively) on biomechanical parameters of walking in non-healthy overweight and obese older adults with knee osteoarthritis, demonstrated that this body mass loss increased walking speed and reduced knee joint forces. Bariatric surgery may induce greater body mass loss (\~30-40%) (Chaston et al. 2007) compared with exercise, diet or pharmaceutical interventions (\~10%) (Franz et al. 2007) and may be considered as an interesting tool to maximize the effect of body mass loss on Wext and NCw in obese individuals and, thus, investigate the relationship between the gait pattern changes and the extra cost of walking in these subjects. Similarly, it would be of interest to investigate how the metabolic changes and body mass loss induced by CHT, potentially associated with an increased metabolic efficiency, would affect gait pattern and the extra cost of walking in obese subjects.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
CH training group
During 3 weeks (9 sessions; three sessions/wk), subject will performed 60 min walking at spontaneous walking speed in hypoxic (continuous hypoxic training, CHT; simulated altitude of 3000 m) condition in a single-blind fashion.
Training
During 3 weeks (9 sessions; three sessions/wk), subject will performed 60 min walking at spontaneous walking speed in normoxic (continuous normoxic training; CNT) or hypoxic (continuous hypoxic training, CHT; simulated altitude of 3000 m) condition in a single-blind fashion. Both CNT and CHT sessions will be performed in an hypoxic chamber (ATS Altitude, Sydney, Australia) built in our laboratory at an altitude of 380 m (Lausanne, Switzerland). In order to blind subjects to altitude, the system will also run for normoxic training groups with a normoxic airflow into the chamber.
CN training group
During 3 weeks (9 sessions; three sessions/wk), subject will performed 60 min walking at spontaneous walking speed in normoxic (continuous normoxic training; CNT) condition in a single-blind fashion.
Training
During 3 weeks (9 sessions; three sessions/wk), subject will performed 60 min walking at spontaneous walking speed in normoxic (continuous normoxic training; CNT) or hypoxic (continuous hypoxic training, CHT; simulated altitude of 3000 m) condition in a single-blind fashion. Both CNT and CHT sessions will be performed in an hypoxic chamber (ATS Altitude, Sydney, Australia) built in our laboratory at an altitude of 380 m (Lausanne, Switzerland). In order to blind subjects to altitude, the system will also run for normoxic training groups with a normoxic airflow into the chamber.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Training
During 3 weeks (9 sessions; three sessions/wk), subject will performed 60 min walking at spontaneous walking speed in normoxic (continuous normoxic training; CNT) or hypoxic (continuous hypoxic training, CHT; simulated altitude of 3000 m) condition in a single-blind fashion. Both CNT and CHT sessions will be performed in an hypoxic chamber (ATS Altitude, Sydney, Australia) built in our laboratory at an altitude of 380 m (Lausanne, Switzerland). In order to blind subjects to altitude, the system will also run for normoxic training groups with a normoxic airflow into the chamber.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* BMI \> 30 kg/m\^2.
* Age \> 18 yr.
Exclusion Criteria
* BMI \< 35 kg/m\^2.
* Diabetes.
* Neurological disorders, orthopaedic injury, history of falls and medications that provoke dizziness.
18 Years
40 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
CHUV - Centre des Maladies Osseuses - Département de l'Appareil Locomoteur (DAL)
UNKNOWN
Centre Hospitalier Universitaire Vaudois
OTHER
University of Lausanne
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Davide MALATESTA
Dr (Ph.D., Senior Lecturer)
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Davide Malatesta, Dr
Role: PRINCIPAL_INVESTIGATOR
Institute of Sport Sciences of the University of Lausanne
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Institute of Sport Sciences of the University of Lausanne
Lausanne, Canton of Vaud, Switzerland
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Browning RC, Baker EA, Herron JA, Kram R. Effects of obesity and sex on the energetic cost and preferred speed of walking. J Appl Physiol (1985). 2006 Feb;100(2):390-8. doi: 10.1152/japplphysiol.00767.2005. Epub 2005 Oct 6.
Faiss R, Leger B, Vesin JM, Fournier PE, Eggel Y, Deriaz O, Millet GP. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS One. 2013;8(2):e56522. doi: 10.1371/journal.pone.0056522. Epub 2013 Feb 20.
Haufe S, Wiesner S, Engeli S, Luft FC, Jordan J. Influences of normobaric hypoxia training on metabolic risk markers in human subjects. Med Sci Sports Exerc. 2008 Nov;40(11):1939-44. doi: 10.1249/MSS.0b013e31817f1988.
Hill JO, Peters JC. Environmental contributions to the obesity epidemic. Science. 1998 May 29;280(5368):1371-4. doi: 10.1126/science.280.5368.1371.
Kayser B, Verges S. Hypoxia, energy balance and obesity: from pathophysiological mechanisms to new treatment strategies. Obes Rev. 2013 Jul;14(7):579-92. doi: 10.1111/obr.12034. Epub 2013 Mar 28.
Messier SP, Gutekunst DJ, Davis C, DeVita P. Weight loss reduces knee-joint loads in overweight and obese older adults with knee osteoarthritis. Arthritis Rheum. 2005 Jul;52(7):2026-32. doi: 10.1002/art.21139.
Messier SP, Legault C, Loeser RF, Van Arsdale SJ, Davis C, Ettinger WH, DeVita P. Does high weight loss in older adults with knee osteoarthritis affect bone-on-bone joint loads and muscle forces during walking? Osteoarthritis Cartilage. 2011 Mar;19(3):272-80. doi: 10.1016/j.joca.2010.11.010. Epub 2010 Dec 4.
Millet GP, Faiss R, Brocherie F, Girard O. Hypoxic training and team sports: a challenge to traditional methods? Br J Sports Med. 2013 Dec;47 Suppl 1(Suppl 1):i6-7. doi: 10.1136/bjsports-2013-092793. No abstract available.
Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP. Combining hypoxic methods for peak performance. Sports Med. 2010 Jan 1;40(1):1-25. doi: 10.2165/11317920-000000000-00000.
Netzer NC, Chytra R, Kupper T. Low intense physical exercise in normobaric hypoxia leads to more weight loss in obese people than low intense physical exercise in normobaric sham hypoxia. Sleep Breath. 2008 May;12(2):129-34. doi: 10.1007/s11325-007-0149-3.
Peyrot N, Morin JB, Thivel D, Isacco L, Taillardat M, Belli A, Duche P. Mechanical work and metabolic cost of walking after weight loss in obese adolescents. Med Sci Sports Exerc. 2010 Oct;42(10):1914-22. doi: 10.1249/MSS.0b013e3181da8d1e.
Peyrot N, Thivel D, Isacco L, Morin JB, Duche P, Belli A. Do mechanical gait parameters explain the higher metabolic cost of walking in obese adolescents? J Appl Physiol (1985). 2009 Jun;106(6):1763-70. doi: 10.1152/japplphysiol.91240.2008. Epub 2009 Feb 26.
Plewa M, Cieślińska-Świder J, and Bacik B. Effects of the Weight loss Treatment on Selected Kinematic Gait Parameters in Obese Women. Journal of Human Kinetics 18: 3-14, 2007.
Pollock ML, Miller HS Jr, Janeway R, Linnerud AC, Robertson B, Valentino R. Effects of walking on body composition and cardiovascular function of middle-aged man. J Appl Physiol. 1971 Jan;30(1):126-30. doi: 10.1152/jappl.1971.30.1.126. No abstract available.
Rosenbaum M, Vandenborne K, Goldsmith R, Simoneau JA, Heymsfield S, Joanisse DR, Hirsch J, Murphy E, Matthews D, Segal KR, Leibel RL. Effects of experimental weight perturbation on skeletal muscle work efficiency in human subjects. Am J Physiol Regul Integr Comp Physiol. 2003 Jul;285(1):R183-92. doi: 10.1152/ajpregu.00474.2002. Epub 2003 Feb 27.
Wiesner S, Haufe S, Engeli S, Mutschler H, Haas U, Luft FC, Jordan J. Influences of normobaric hypoxia training on physical fitness and metabolic risk markers in overweight to obese subjects. Obesity (Silver Spring). 2010 Jan;18(1):116-20. doi: 10.1038/oby.2009.193. Epub 2009 Jun 18.
Fernandez Menendez A, Saudan G, Sperisen L, Hans D, Saubade M, Millet GP, Malatesta D. Effects of Short-Term Normobaric Hypoxic Walking Training on Energetics and Mechanics of Gait in Adults with Obesity. Obesity (Silver Spring). 2018 May;26(5):819-827. doi: 10.1002/oby.22131. Epub 2018 Mar 25.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
136/14
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.