Effect of Transcranial Direct Current Stimulation (tDCS) on Tobacco Consumption
NCT ID: NCT01930422
Last Updated: 2014-02-24
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
34 participants
INTERVENTIONAL
2013-07-31
2014-02-28
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The study hypothesis is that a repeated application for 5 consecutive days of a real tDCS on the left dorsolateral prefrontal cortex region will reduce the craving induced causing a decreased of daily tobacco consumption between Day 1 and Day 5 which can persist at the final visit between Day 15 and Day 20.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effect of the Transcranial Direct Current Stimulation (tDCS) on Dependent Smoking People
NCT02867514
Effects of Transcranial Direct Current Stimulation on Cigarette Addiction
NCT02146014
Effects of Repetitive tDCS on ad Libitum Smoking Behavior: EMA and EEG Study
NCT03027687
Deep Transcranial Magnetic Stimulation (dTMS) to Induce Smoking Cessation
NCT03264313
Transcranial Magnetic Stimulation and Tobacco Use Disorder
NCT03827265
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
TRIPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Real tDCS
Direct transcranial electrical stimulation (tDCS procedure)
tDCS procedure
The tDCS is a non-invasive neuromodulation method. A stimulator delivers a constant current of low intensity (1-2 mA) applied to the average of two bipolar electrodes placed on the scalp for 20 minutes. This constant current generates a static electric field that selectively modulates the activity of cortical neurones. A tingling sensation under the electrodes appears at the beginning and at the end of stimulation but it is transient and disappears quickly in 30 or 60 seconds.
Placebo tDCS
Sham procedure
Sham procedure
The tDCS placebo differs from the real tDCS by the interruption of stimulation after 30 to 60 seconds and reactivation of this stimulation 30 to 60 seconds before the end of the session, which lasted 20 minutes. The tingling felt at the beginning and the end of the session will be the same as those experienced with real stimulation. The electrodes establishment does not differ with respect to tDCS.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
tDCS procedure
The tDCS is a non-invasive neuromodulation method. A stimulator delivers a constant current of low intensity (1-2 mA) applied to the average of two bipolar electrodes placed on the scalp for 20 minutes. This constant current generates a static electric field that selectively modulates the activity of cortical neurones. A tingling sensation under the electrodes appears at the beginning and at the end of stimulation but it is transient and disappears quickly in 30 or 60 seconds.
Sham procedure
The tDCS placebo differs from the real tDCS by the interruption of stimulation after 30 to 60 seconds and reactivation of this stimulation 30 to 60 seconds before the end of the session, which lasted 20 minutes. The tingling felt at the beginning and the end of the session will be the same as those experienced with real stimulation. The electrodes establishment does not differ with respect to tDCS.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Smoking ≥ 5 years
* Smoking ≥ 15 manufactured cigarettes per day or ≥ 10 rolled cigarettes per day
* Fagerström test ≥ 5
* Smokers who have at least an attempt to stop of minimum 7 days
* Written informed consent signed by the patient
* Affiliated to medical insurance
Exclusion Criteria
* HAD test: D ≥ 8; A + D ≥ 19
* Treatment by nicotine replacement therapy, bupropion or varenicline within 30 days prior inclusion
* Neuropsychiatric disease, considered serious by the investigator
* Psychotropic treatment (antidepressant, anxiolytic, antipsychotic)
* Skin scalp dermatosis
* Pregnancy or breastfeeding. Positive pregnancy test.
* Patient under guardianship, trusteeship or judicial protection
* Patient in inclusion period for another clinical research protocol
18 Years
60 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University Hospital, Toulouse
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Rose-Marie ROUQUET, MD
Role: PRINCIPAL_INVESTIGATOR
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University Hospital, Toulouse
Toulouse, Midi-Pyrénées, France
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Organisation Mondiale de la Santé. Rapport de l'OMS sur l'épidémie mondiale de tabagisme 2011, résumé d'orientation. OMS 2011
Rapport OMS Mpower 2008.
Observatoire français des drogues et des toxicomanies. Les niveaux d'usage des drogues en France en 2010. OFDT Tendances, n°76, juin 2011
Le Faou AL, Scemama O. [Epidemiology of tobacco smoking]. Rev Mal Respir. 2005 Dec;22(6 Pt 2):8S27-32. French.
Hill C, Jougla E, Beck F. Le point sur l'épidémie de cancer du poumon dû au tabagisme. BEH mai 2010; 19-20: 210-213
Fuxe, K., Anderson, K., Eneroth, P., 1987. Effects of nicotine and exposure to cigarette smoke on discrete dopamine and noradrenaline nerve terminal systems of the telcephalon and diencephalon of the rat: relationship to reward mechanisms and distribution of nicotine binding sites in brain. In: Martin, W.R., Van Loon, G.R., Iwamoto, E.T., et al. (Eds.), Tobacco Smoking and Nicotine: A Neurobiological Approach. Plenum, New York, pp. 225-262.
Pert, A., Clarke, P.B.S., 1987. Nicotine modulation of dopaminergic transmission: functional implications. In: Martin, W.R., Van Loon, G.R., Iwamoto, E.T., et al. (Eds.), Tobacco, Smoking and Nicotine: A Neurobiological Approach. Plenum, New York, pp.169-189.
United States Department of Health and Human Services, 1988. The Health Consequences of Smoking: Nicotine Addiction. US Government Printing Office, Washington, DC DHHS Publication No.CDC-88-8406.
Clarke, P., 1990. Mesolimbic dopaminergic activation: the key to nicotine reinforcement. In: Bock, G., Marsh, J. (Eds.), The Biology of Nicotine Dependence. Wiley, New York, pp. 153-168.
Pich EM, Pagliusi SR, Tessari M, Talabot-Ayer D, Hooft van Huijsduijnen R, Chiamulera C. Common neural substrates for the addictive properties of nicotine and cocaine. Science. 1997 Jan 3;275(5296):83-6. doi: 10.1126/science.275.5296.83.
Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev. 1987 Oct;94(4):469-92. No abstract available.
Collins AC, Marks MJ. Progress towards the development of animal models of smoking-related behaviors. J Addict Dis. 1991;10(1-2):109-26. doi: 10.1300/J069v10n01_08.
Pomerleau OF. Individual differences in sensitivity to nicotine: implications for genetic research on nicotine dependence. Behav Genet. 1995 Mar;25(2):161-77. doi: 10.1007/BF02196925.
Robinson TE, Berridge KC. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev. 1993 Sep-Dec;18(3):247-91. doi: 10.1016/0165-0173(93)90013-p.
Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO. The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict. 1991 Sep;86(9):1119-27. doi: 10.1111/j.1360-0443.1991.tb01879.x.
Pickens RW, Johanson CE. Craving: consensus of status and agenda for future research. Drug Alcohol Depend. 1992 Jun;30(2):127-31. doi: 10.1016/0376-8716(92)90017-7.
Marlatt, G.A., Gordon, J.R. (Eds.), 1985. Relapse Prevention. Guilford, New York
Killen JD, Fortmann SP. Craving is associated with smoking relapse: findings from three prospective studies. Exp Clin Psychopharmacol. 1997 May;5(2):137-42. doi: 10.1037//1064-1297.5.2.137.
Shiffman S, Engberg JB, Paty JA, Perz WG, Gnys M, Kassel JD, Hickcox M. A day at a time: predicting smoking lapse from daily urge. J Abnorm Psychol. 1997 Feb;106(1):104-16. doi: 10.1037//0021-843x.106.1.104.
Abrams DB, Monti PM, Pinto RP, Elder JP, Brown RA, Jacobus SI. Psychosocial stress and coping in smokers who relapse or quit. Health Psychol. 1987;6(4):289-303. doi: 10.1037//0278-6133.6.4.289.
Niaura R, Abrams DB, Pedraza M, Monti PM, Rohsenow DJ. Smokers' reactions to interpersonal interaction and presentation of smoking cues. Addict Behav. 1992 Nov-Dec;17(6):557-66. doi: 10.1016/0306-4603(92)90065-4.
Shiffman S, Paty JA, Gnys M, Kassel JA, Hickcox M. First lapses to smoking: within-subjects analysis of real-time reports. J Consult Clin Psychol. 1996 Apr;64(2):366-79. doi: 10.1037//0022-006x.64.2.366.
Brody AL, Mandelkern MA, London ED, Childress AR, Lee GS, Bota RG, Ho ML, Saxena S, Baxter LR Jr, Madsen D, Jarvik ME. Brain metabolic changes during cigarette craving. Arch Gen Psychiatry. 2002 Dec;59(12):1162-72. doi: 10.1001/archpsyc.59.12.1162.
McClernon FJ, Hiott FB, Huettel SA, Rose JE. Abstinence-induced changes in self-report craving correlate with event-related FMRI responses to smoking cues. Neuropsychopharmacology. 2005 Oct;30(10):1940-7. doi: 10.1038/sj.npp.1300780.
Wilson SJ, Sayette MA, Delgado MR, Fiez JA. Instructed smoking expectancy modulates cue-elicited neural activity: a preliminary study. Nicotine Tob Res. 2005 Aug;7(4):637-45. doi: 10.1080/14622200500185520.
Smolka MN, Buhler M, Klein S, Zimmermann U, Mann K, Heinz A, Braus DF. Severity of nicotine dependence modulates cue-induced brain activity in regions involved in motor preparation and imagery. Psychopharmacology (Berl). 2006 Mar;184(3-4):577-88. doi: 10.1007/s00213-005-0080-x. Epub 2005 Aug 13.
Brody AL, Mandelkern MA, Olmstead RE, Jou J, Tiongson E, Allen V, Scheibal D, London ED, Monterosso JR, Tiffany ST, Korb A, Gan JJ, Cohen MS. Neural substrates of resisting craving during cigarette cue exposure. Biol Psychiatry. 2007 Sep 15;62(6):642-51. doi: 10.1016/j.biopsych.2006.10.026. Epub 2007 Jan 9.
Lee JH, Lim Y, Wiederhold BK, Graham SJ. A functional magnetic resonance imaging (FMRI) study of cue-induced smoking craving in virtual environments. Appl Psychophysiol Biofeedback. 2005 Sep;30(3):195-204. doi: 10.1007/s10484-005-6377-z.
Due DL, Huettel SA, Hall WG, Rubin DC. Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging. Am J Psychiatry. 2002 Jun;159(6):954-60. doi: 10.1176/appi.ajp.159.6.954.
Ferguson SG, Shiffman S. The relevance and treatment of cue-induced cravings in tobacco dependence. J Subst Abuse Treat. 2009 Apr;36(3):235-43. doi: 10.1016/j.jsat.2008.06.005. Epub 2008 Aug 20.
Tiffany ST, Cox LS, Elash CA. Effects of transdermal nicotine patches on abstinence-induced and cue-elicited craving in cigarette smokers. J Consult Clin Psychol. 2000 Apr;68(2):233-40. doi: 10.1037//0022-006x.68.2.233.
Singleton EG, Anderson LM, Heishman SJ. Reliability and validity of the Tobacco Craving Questionnaire and validation of a craving-induction procedure using multiple measures of craving and mood. Addiction. 2003 Nov;98(11):1537-46. doi: 10.1046/j.1360-0443.2003.00449.x.
Heishman SJ, Singleton EG, Moolchan ET. Tobacco Craving Questionnaire: reliability and validity of a new multifactorial instrument. Nicotine Tob Res. 2003 Oct;5(5):645-54. doi: 10.1080/1462220031000158681.
Berlin I, Vorspan F, Singleton EG, Warot D, Notides C, Heishman SJ. Reliability and validity of the French version of the tobacco craving questionnaire. Eur Addict Res. 2005;11(2):62-8. doi: 10.1159/000083034.
Heishman SJ, Singleton EG, Pickworth WB. Reliability and validity of a Short Form of the Tobacco Craving Questionnaire. Nicotine Tob Res. 2008 Apr;10(4):643-51. doi: 10.1080/14622200801908174.
Berlin I, Singleton EG, Heishman SJ. Validity of the 12-item French version of the Tobacco Craving Questionnaire in treatment-seeking smokers. Nicotine Tob Res. 2010 May;12(5):500-7. doi: 10.1093/ntr/ntq039. Epub 2010 Mar 24.
Koob GF, Sanna PP, Bloom FE. Neuroscience of addiction. Neuron. 1998 Sep;21(3):467-76. doi: 10.1016/s0896-6273(00)80557-7. No abstract available.
Afssaps 2003 (RBPC) : stratégies thérapeutiques médicamenteuses et non médicamenteuses de l'aide à l'arrêt du tabac
Stead LF, Perera R, Bullen C, Mant D, Lancaster T. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev. 2008 Jan 23;(1):CD000146. doi: 10.1002/14651858.CD000146.pub3.
Woolacott NF, Jones L, Forbes CA, Mather LC, Sowden AJ, Song FJ, Raftery JP, Aveyard PN, Hyde CJ, Barton PM. The clinical effectiveness and cost-effectiveness of bupropion and nicotine replacement therapy for smoking cessation: a systematic review and economic evaluation. Health Technol Assess. 2002;6(16):1-245. doi: 10.3310/hta6160. No abstract available.
Silagy C, Lancaster T, Stead L, Mant D, Fowler G. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev. 2004;(3):CD000146. doi: 10.1002/14651858.CD000146.pub2.
Hughes JR, Stead LF, Lancaster T. Antidepressants for smoking cessation. Cochrane Database Syst Rev. 2007 Jan 24;(1):CD000031. doi: 10.1002/14651858.CD000031.pub3.
Moore TJ, Furberg CD, Glenmullen J, Maltsberger JT, Singh S. Suicidal behavior and depression in smoking cessation treatments. PLoS One. 2011;6(11):e27016. doi: 10.1371/journal.pone.0027016. Epub 2011 Nov 2.
Cahill K, Stead LF, Lancaster T. Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev. 2007 Jan 24;(1):CD006103. doi: 10.1002/14651858.CD006103.pub2.
Afssaps - Plan de gestion de risque de la spécialité pharmaceutique CHAMPIX ® Fev 2008
Gourlay SG, Stead LF, Benowitz NL. Clonidine for smoking cessation. Cochrane Database Syst Rev. 2004;2004(3):CD000058. doi: 10.1002/14651858.CD000058.pub2.
Public Health Service. Treating tobacco use and dependence. Clinical practice guideline. Washington (DC):US Department of Health and Human Services; 2000.
Raupach T, Hoogsteder PH, Onno van Schayck CP. Nicotine vaccines to assist with smoking cessation: current status of research. Drugs. 2012 Mar 5;72(4):e1-16. doi: 10.2165/11599900-000000000-00000.
Cottraux J. Les thérapies comportementales et cognitives, 4ème édition Historique Masson 2004; 2: 20-32
Cottraux J. Les thérapies comportementales et cognitives, 4ème édition Des théories de l'apprentissage aux théories cognitives Masson 2004; 3: 35-66
Le Foll B, Aubin HJ, Lagrue G. [Behavioral and cognitive therapy to break the smoking habit. Review of the literature]. Ann Med Interne (Paris). 2002 May;153(3 Suppl):1S32-40. French.
Avis de la HAS, Haute Autorité de Santé Stratégies thérapeutiques d'aide au sevrage tabagique, efficacité, efficience et prise en charge financière. HAS, octobre 2006
Agence Française de Sécurité Sanitaire des Produits de Santé Les stratégies thérapeutiques médicamenteuses et non médicamenteuses de l'aide à l'arrêt du tabac. Argumentaire, Recommandations de bonne pratique. AFSSAPS, mai 2003
Lang N, Hasan A, Sueske E, Paulus W, Nitsche MA. Cortical hypoexcitability in chronic smokers? A transcranial magnetic stimulation study. Neuropsychopharmacology. 2008 Sep;33(10):2517-23. doi: 10.1038/sj.npp.1301645. Epub 2007 Dec 5.
Brunelin J, Poulet E, Boeuve C, Zeroug-vial H, d'Amato T, Saoud M. [Efficacy of repetitive transcranial magnetic stimulation (rTMS) in major depression: a review]. Encephale. 2007 Mar-Apr;33(2):126-34. doi: 10.1016/s0013-7006(07)91542-0. French.
Meng Z, Liu S, Zheng Y, Phillips JS. Repetitive transcranial magnetic stimulation for tinnitus. Cochrane Database Syst Rev. 2011 Oct 5;(10):CD007946. doi: 10.1002/14651858.CD007946.pub2.
Barr MS, Fitzgerald PB, Farzan F, George TP, Daskalakis ZJ. Transcranial magnetic stimulation to understand the pathophysiology and treatment of substance use disorders. Curr Drug Abuse Rev. 2008 Nov;1(3):328-39. doi: 10.2174/1874473710801030328.
Hoppner J, Broese T, Wendler L, Berger C, Thome J. Repetitive transcranial magnetic stimulation (rTMS) for treatment of alcohol dependence. World J Biol Psychiatry. 2011 Sep;12 Suppl 1:57-62. doi: 10.3109/15622975.2011.598383.
Barth KS, Rydin-Gray S, Kose S, Borckardt JJ, O'Neil PM, Shaw D, Madan A, Budak A, George MS. Food cravings and the effects of left prefrontal repetitive transcranial magnetic stimulation using an improved sham condition. Front Psychiatry. 2011 Mar 14;2:9. doi: 10.3389/fpsyt.2011.00009. eCollection 2011.
Johann M, Wiegand R, Kharraz A, Bobbe G, Sommer G, Hajak G, Wodarz N, Eichhammer P. [Repetitiv Transcranial Magnetic Stimulation in Nicotine Dependence]. Psychiatr Prax. 2003 May;30(Suppl 2):129-131. doi: 10.1055/s-2003-39733. German.
Eichhammer P, Johann M, Kharraz A, Binder H, Pittrow D, Wodarz N, Hajak G. High-frequency repetitive transcranial magnetic stimulation decreases cigarette smoking. J Clin Psychiatry. 2003 Aug;64(8):951-3. doi: 10.4088/jcp.v64n0815.
Amiaz R, Levy D, Vainiger D, Grunhaus L, Zangen A. Repeated high-frequency transcranial magnetic stimulation over the dorsolateral prefrontal cortex reduces cigarette craving and consumption. Addiction. 2009 Apr;104(4):653-60. doi: 10.1111/j.1360-0443.2008.02448.x. Epub 2009 Jan 12.
Rose JE, McClernon FJ, Froeliger B, Behm FM, Preud'homme X, Krystal AD. Repetitive transcranial magnetic stimulation of the superior frontal gyrus modulates craving for cigarettes. Biol Psychiatry. 2011 Oct 15;70(8):794-799. doi: 10.1016/j.biopsych.2011.05.031. Epub 2011 Jul 18.
Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000 Sep 15;527 Pt 3(Pt 3):633-9. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x.
Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008 Jul;1(3):206-23. doi: 10.1016/j.brs.2008.06.004. Epub 2008 Jul 1.
Gartside IB. Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: role of protein synthesis. Nature. 1968 Oct 26;220(5165):383-4. doi: 10.1038/220383a0. No abstract available.
Hattori Y, Moriwaki A, Hori Y. Biphasic effects of polarizing current on adenosine-sensitive generation of cyclic AMP in rat cerebral cortex. Neurosci Lett. 1990 Aug 24;116(3):320-4. doi: 10.1016/0304-3940(90)90094-p.
Islam N, Aftabuddin M, Moriwaki A, Hattori Y, Hori Y. Increase in the calcium level following anodal polarization in the rat brain. Brain Res. 1995 Jul 3;684(2):206-8. doi: 10.1016/0006-8993(95)00434-r.
Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006 Apr;117(4):845-50. doi: 10.1016/j.clinph.2005.12.003. Epub 2006 Jan 19.
Bikson M, Datta A, Elwassif M. Establishing safety limits for transcranial direct current stimulation. Clin Neurophysiol. 2009 Jun;120(6):1033-4. doi: 10.1016/j.clinph.2009.03.018. Epub 2009 Apr 24. No abstract available.
Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007 May 30;72(4-6):208-14. doi: 10.1016/j.brainresbull.2007.01.004. Epub 2007 Jan 24.
Fregni F, Liguori P, Fecteau S, Nitsche MA, Pascual-Leone A, Boggio PS. Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cue-provoked smoking craving: a randomized, sham-controlled study. J Clin Psychiatry. 2008 Jan;69(1):32-40. doi: 10.4088/jcp.v69n0105.
Boggio PS, Liguori P, Sultani N, Rezende L, Fecteau S, Fregni F. Cumulative priming effects of cortical stimulation on smoking cue-induced craving. Neurosci Lett. 2009 Sep 29;463(1):82-6. doi: 10.1016/j.neulet.2009.07.041. Epub 2009 Jul 18.
Boggio PS, Zaghi S, Villani AB, Fecteau S, Pascual-Leone A, Fregni F. Modulation of risk-taking in marijuana users by transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC). Drug Alcohol Depend. 2010 Dec 1;112(3):220-5. doi: 10.1016/j.drugalcdep.2010.06.019. Epub 2010 Aug 21.
Boggio PS, Sultani N, Fecteau S, Merabet L, Mecca T, Pascual-Leone A, Basaglia A, Fregni F. Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol Depend. 2008 Jan 1;92(1-3):55-60. doi: 10.1016/j.drugalcdep.2007.06.011. Epub 2007 Jul 19.
Fu M, Fernandez E, Martinez-Sanchez JM, Pascual JA, Schiaffino A, Agudo A, Ariza C, Borras JM, Samet JM; DCOT Study investigators. Salivary cotinine concentrations in daily smokers in Barcelona, Spain: a cross-sectional study. BMC Public Health. 2009 Sep 3;9:320. doi: 10.1186/1471-2458-9-320.
Fu M, Martinez-Sanchez JM, Agudo A, Pascual JA, Ariza C, Moncada A, Fernandez E; DCOT Study Investigators. Nicotine depedence and salivary cotinine concentration in daily smokers. Eur J Cancer Prev. 2012 Jan;21(1):96-102. doi: 10.1097/CEJ.0b013e32834a7e59.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
AOL 2012
Identifier Type: OTHER
Identifier Source: secondary_id
12 392 02
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.