Evaluation of HealinG of Polymer-Free Biomlimus A9-Coated Stent by Optical Coherence Tomography (EGO-BIOFREEDOM)
NCT ID: NCT01760876
Last Updated: 2017-08-14
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
106 participants
INTERVENTIONAL
2012-12-31
2015-08-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Biolimus A9 is the therapeutic agent used in the BioFreedom drug coated stent. Biolimus A9 is a proprietary semi-synthetic sirolimus derivative. It is highly lipophilic, rapidly absorbed in tissues, and able to reversibly inhibit growth factor-stimulated cell proliferation.
In this study, we use intracoronary optical coherence tomography (OCT) to evaluate the BioFreedom Stents after implantation regarding endovascular healing over time as primary objective; and also to evaluate secondary OCT, angiographic and clinical outcomes at various specific time points.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
A Study Evaluating the Vascular Healing and Neointimal Transformation at 1 Month After Implantation of BioFreedom™ Drug-coated Stents and the Xience Drug-eluting Stent System in Patients With Acute Coronary Syndrome and High Bleeding Risk Using Optical Coherence Tomography
NCT07230847
BioFreedom QCA Study in CAD Patients
NCT03307213
LEADERS FREE IV (RCT): BioFreedom™ Ultra vs BioFreedom™ in HBR Patients
NCT06657326
BioFreedom FIM Clinical Trial.
NCT01172119
Asian Registry of the BioFreedom Stent for STEMI Patients
NCT03609346
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Early (ie first) generation DES consisted of a metal stent for vessel scaffolding, cytotoxic drug for neointimal growth inhibition and a polymer coating to improve the biocompatibility of the stents or as a vehicle to load drugs onto stents. Since polymers have been identified as a possible cause of late complications of DES, new stents are being designed to improve polymers' biocompatibility or to bond drugs on stents without polymers. Biodegradable polymers are likely to be safer than nonabsorbable polymers because inflammation will be eliminated after the polymer degrades.
The BioFreedom drug coated stent (DCS) Coronary Stent Delivery System is comprised of three key components including 1) a 316 L stainless steel bare metal stent platform which has been modified with a proprietary surface treatment resulting in a selectively micro-structured, abluminal surface. The selectively micro-structured surface allows 2) Biolimus A9TM (drug) adhesion to the abluminal surface of the stent without the use of a polymer or binder. The drug-coated stent is crimped onto 3) a delivery system which includes a high pressure, semi-compliant balloon incorporated onto the distal tip of a rapid exchange delivery catheter system. The delivery system has two radiopaque markers inside the balloon, which fluoroscopically mark the ends of the stent to facilitate proper stent placement.
Biolimus A9 is the therapeutic agent used in the BioFreedom DCS. Biolimus A9 is a proprietary semi-synthetic sirolimus derivative. It is highly lipophilic, rapidly absorbed in tissues, and able to reversibly inhibit growth factor-stimulated cell proliferation. Current data suggest that Biolimus A9, on a molecular level, forms a complex with the cytoplasmic proteins that inhibit the cell cycle between the G0 and G1 phase. The result is an interruption of the cascade governing cell reproduction, growth, and proliferation. Related pharmaceuticals, sirolimus and everolimus, are well tolerated cytostatic immunosuppressive agents with predictable and similar adverse event profiles. Biolimus A9 is closely related chemically to both sirolimus and everolimus. Based on administration in healthy volunteers, Biolimus A9 has been shown to have a very similar adverse event profile to these other two drugs when used at equivalent dose levels., Biolimus A9 easily crosses the cell membrane to achieve therapeutic effects in target smooth muscle cells and, compared with the sirolimus-eluting Cypher stent (SES), the high lipophilicity of BA9 leads to relatively low systemic exposure.(5) Furthermore, the drug coating is applied only to the abluminal surface of the stent, allowing the drug release to be directed almost entirely into the vessel wall where it targets the smooth muscle cells injured by the angioplasty procedure. On the other hand, there is little drug release on the luminal surfaces of the stent, thus there is less inhibition of endothelial cells which need to grow on the inside of the stent in order for healing to occur.
Animal studies have shown the Biofreedom stent demonstrates equivalent or less early and late reduction of intimal smooth muscle cell proliferation compared with the Cypher Sirolimus-eluting stent (SES) in a porcine model. After implantation of BioFreedom stent, delayed arterial healing has been shown to be minimal, and there was no increased inflammation at 180 days compared with SES implantation (6). Pharmacokinetic and tissue concentration analyses showed that there was no high early peaking of Biolimus A9 level in blood (6). On-going studies of Biofreedom in humans showed non-inferiority of in-stent late lumen loss at 12 months versus paclitaxel eluting stents (PES) (7).
This current EGO BIOFREEDOM study protocol is designed based on the approved protocols of the EGO Study and EGO-COMBO Study, which were both successfully completed. We aim to focus mainly on the time frame, degree of endothelialization, and the subsequent neointimal proliferation after BioFreedom stent implantation, as assessed by the state-of-the-art intracoronary imaging - optical coherence tomography (OCT), which has been used extensively in the completed EGO and EGO-COMBO study.
Indeed, intracoronary optical coherence tomography (OCT) is a simple catheter-based imaging technique using optic fibre to achieve very detailed assessment (resolution down to 100 microns) in intra-coronary stent apposition, early stent coverage (endothelialization) and late stent neoinitmal growth (restenosis). It is performed as part of routine cardiac catheterization procedure and provides high-resolution cross sectional images of the coronary arteries. OCT has been shown to be safe in clinical practice (8). The LightLab C7XR OCT system (Frequency Domain OCT) is a commercial available product with CE Mark and FDA approval, which has been used in the EGO Studies. The OCT catheter is a non-occlusive optic fibre which is extremely small and flexible. It poses no additional risk to the patient other than those inherent risks of a standard angioplasty procedure.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Biofreedom stent
Coronary intervention
coronary intervention
The BioFreedom drug coated stent (DCS) Coronary Stent Delivery System is comprised of three key components
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
coronary intervention
The BioFreedom drug coated stent (DCS) Coronary Stent Delivery System is comprised of three key components
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patient indicated for percutaneous coronary intervention with coronary artery disease and without contraindications to implantation of drug eluting stents
* Patient who agrees to have follow-up coronary angiograms
Exclusion Criteria
18 Years
85 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Professor Stephen Lee
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Professor Stephen Lee
Professor and Chief
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Stephen WL Lee, MD FRCP FACC
Role: PRINCIPAL_INVESTIGATOR
Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hospital Authority
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hospital Authority
Hong Kong, , Hong Kong
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Sousa JE, Costa MA, Abizaid AC, Rensing BJ, Abizaid AS, Tanajura LF, Kozuma K, Van Langenhove G, Sousa AG, Falotico R, Jaeger J, Popma JJ, Serruys PW. Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one-year angiographic and intravascular ultrasound follow-up. Circulation. 2001 Oct 23;104(17):2007-11. doi: 10.1161/hc4201.098056.
Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, Kutys R, Skorija K, Gold HK, Virmani R. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006 Jul 4;48(1):193-202. doi: 10.1016/j.jacc.2006.03.042. Epub 2006 May 5.
Virmani R, Guagliumi G, Farb A, Musumeci G, Grieco N, Motta T, Mihalcsik L, Tespili M, Valsecchi O, Kolodgie FD. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation. 2004 Feb 17;109(6):701-5. doi: 10.1161/01.CIR.0000116202.41966.D4. Epub 2004 Jan 26.
Kornowski R, Hong MK, Tio FO, Bramwell O, Wu H, Leon MB. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol. 1998 Jan;31(1):224-30. doi: 10.1016/s0735-1097(97)00450-6.
Ostojic M, Sagic D, Jung R, Zhang YL, Nedeljkovic M, Mangovski L, Stojkovic S, Debeljacki D, Colic M, Beleslin B, Milosavljevic B, Orlic D, Topic D, Karanovic N, Paunovic D, Christians U; NOBORI PK Investigators. The pharmacokinetics of Biolimus A9 after elution from the Nobori stent in patients with coronary artery disease: the NOBORI PK study. Catheter Cardiovasc Interv. 2008 Dec 1;72(7):901-8. doi: 10.1002/ccd.21775.
Tada N, Virmani R, Grant G, Bartlett L, Black A, Clavijo C, Christians U, Betts R, Savage D, Su SH, Shulze J, Kar S. Polymer-free biolimus a9-coated stent demonstrates more sustained intimal inhibition, improved healing, and reduced inflammation compared with a polymer-coated sirolimus-eluting cypher stent in a porcine model. Circ Cardiovasc Interv. 2010 Apr;3(2):174-83. doi: 10.1161/CIRCINTERVENTIONS.109.877522.
Prati F, Cera M, Ramazzotti V, Imola F, Giudice R, Albertucci M. Safety and feasibility of a new non-occlusive technique for facilitated intracoronary optical coherence tomography (OCT) acquisition in various clinical and anatomical scenarios. EuroIntervention. 2007 Nov;3(3):365-70. doi: 10.4244/eijv3i3a66.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
UW 12-454
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.