An Evaluation of a Self-contained Direct Digital Radiography System for Breast Specimen Imaging
NCT ID: NCT01379092
Last Updated: 2012-03-16
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
100 participants
INTERVENTIONAL
2011-06-30
2012-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Breast Cancer Detection: Comparison of Breast Tomosynthesis and Conventional Mammography
NCT01669148
Evaluation of the Efficacy of Digital Breast Tomosynthesis Imaging
NCT01373671
Multicenter Hologic Tomosynthesis Study
NCT00971087
Low Dose Molecular Breast Imaging as a Screening Tool for Women With Dense Breasts
NCT01925170
Screening for Breast Cancer With Digital Breast Tomosynthesis
NCT02698202
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Near real-time image acquisition, review and feedback is essential for specimen imaging. The patient typically remains in compression on the biopsy table for MIBB or under anesthesia for BSS until the clinician has confirmation that the index abnormality has been adequately sampled (in the case of MIBB) or surgically excised. For this reason, digital techniques are favored over analog (film) counterparts because of the immediacy of image acquisition and transfer and display to the radiologist for review.
Image quality and speed are critical factors in specimen imaging. High resolution images are a clinical requirement to delineate the features and extent of mass lesions, and presence and extent of microcalcifications.
Conventional full-field digital (FFDM) mammographic equipment located in the mammography department is one accepted approach for specimen imaging. An advantage of this method is that a licensed and skilled mammographic technologist assures the adequate exposure of specimens. However, this method requires that the FFDM system be free at the time the specimen arrives in the mammography department, interfering with mammogram schedules. In the case of BSS, the use of conventional FFDM systems additionally requires the transport of specimens to the mammography department, adding significant time that the patient is under anesthesia.
Another mode for specimen radiography is self-contained digital radiography specimen imaging systems that are located in the mammography department or in the Operating Room (intraoperative). The use of self-contained digital systems frees the conventional mammography system for its intended purpose, while providing the clinician all the speed of digital radiography.
It has been shown that intraoperative imaging significantly reduces the amount of time that the patient is under anesthesia.
Although, self-contained digital radiography specimen imaging systems provide an advantage in speed, resulting images may suffer in image quality and despite the availability of intraoperative self contained systems, many clinicians choose to transfer specimens to the mammography department for imaging on a conventional FFDM system. Current specimen radiography systems employ an indirect digital technique, a two step conversion, where incoming x-ray signal is converted to light and then to digital signal. The intermediate step of converting signal to light, leads to diffusion and scatter over many pixels and this in turn leads to degradation of the very fine features of mass densities and microcalcifications.
Direct Digital technique is another method currently used in breast imaging. The direct digital technique has the advantage of converting incoming signal directly to digital signal, avoiding the intermediary light conversion phase of indirect exposure. The direct to digital process results in better use of incoming signal and greater resolution and thus a sharper image, providing high resolution of minute features associated with mass lesions and microcalcifications.
Another common characteristic of current self-contained systems is the use of "stitching" many small CMOS chips to create a larger image detector. This type of tiling provides for a more economical system, but shearing effects, gaps between chips and overall concerns with calibration of multiple chips significantly degrades image quality.
All digital images, indirect or direct are acquired in a raw state and processed to allow review. While image processing cannot improve or change the raw aspects of the image after acquisition, processing can improve the visibility of features available in the image. Image processing is fundamentally associated with image acquisition technique. If the image is not adequately exposed, image processing will not be optimally applied and in some cases fail, requiring additional imaging.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
DIAGNOSTIC
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Breast biopsy specimen imaging & comparison of image quality
Each subject's explanted tissue will serve as both the control (standard analysis) and the experimental analysis of the quality of the images.
Trident Specimen Radiography System
MIBB images will be acquired on the standard of care device and the Trident System in the Breast Center at Hoag Hospital. BSS images will be acquired on standard of care device in the Operating Room and/or the Breast Center at Hoag Hospital and then on the Trident System. Image quality will be compared and system operation will be evaluated. Feedback will be provided to manufacturer and the Trident System further refined.
Bioptics, Faxitron, and Full Field Digital Mammography (FFDM) Selenia
All the above devices are used for SOC BSS imaging at Hoag Hospital. The images captured from these devices will be compared to the images captured from the Trident Specimen Radiography device.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Trident Specimen Radiography System
MIBB images will be acquired on the standard of care device and the Trident System in the Breast Center at Hoag Hospital. BSS images will be acquired on standard of care device in the Operating Room and/or the Breast Center at Hoag Hospital and then on the Trident System. Image quality will be compared and system operation will be evaluated. Feedback will be provided to manufacturer and the Trident System further refined.
Bioptics, Faxitron, and Full Field Digital Mammography (FFDM) Selenia
All the above devices are used for SOC BSS imaging at Hoag Hospital. The images captured from these devices will be compared to the images captured from the Trident Specimen Radiography device.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
18 Years
FEMALE
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Hologic, Inc.
INDUSTRY
Levine, Gary M. , M.D.
INDIV
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Gary M Levine, M.D.
Director of Breast Imaging
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Gary M. Levine, M.D.
Role: PRINCIPAL_INVESTIGATOR
Hoag Memorial Hospital Presbyterian
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hoag Memorial Hospital Presbyterian
Newport Beach, California, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
References
Explore related publications, articles, or registry entries linked to this study.
Silverstein MJ, Lagios MD, Recht A, Allred DC, Harms SE, Holland R, Holmes DR, Hughes LL, Jackman RJ, Julian TB, Kuerer HM, Mabry HC, McCready DR, McMasters KM, Page DL, Parker SH, Pass HA, Pegram M, Rubin E, Stavros AT, Tripathy D, Vicini F, Whitworth PW. Image-detected breast cancer: state of the art diagnosis and treatment. J Am Coll Surg. 2005 Oct;201(4):586-97. doi: 10.1016/j.jamcollsurg.2005.05.032. No abstract available.
Kaufman CS, Jacobson L, Bachman BA, Kaufman LB, Mahon C, Gambrell LJ, Seymour R, Briscoe J, Aulisio K, Cunningham A, Opstad F, Schnell N, Robertson J, Oliver L. Intraoperative digital specimen mammography: rapid, accurate results expedite surgery. Ann Surg Oncol. 2007 Apr;14(4):1478-85. doi: 10.1245/s10434-006-9126-5. Epub 2007 Jan 18.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2011-01-LEV
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.