Optimizing Hand Rehabilitation Post-Stroke Using Interactive Virtual Environments
NCT ID: NCT01072461
Last Updated: 2015-10-07
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE1
55 participants
INTERVENTIONAL
2009-03-31
2015-03-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Robot Assisted Virtual Rehabilitation for the Hand Post Stroke (RAVR)
NCT03569059
Effects of Device-assisted Practice of ADL on Arm/Hand Recovery in Individuals With Moderate to Severe Stroke
NCT04077073
Translating Intensive Arm Rehabilitation in Stroke to a Telerehabilitation Format
NCT02665052
Early Independent Adaptive Arm and Hand Rehab
NCT02749500
Evaluation of Robot Assisted Neuro-Rehabilitation
NCT01253018
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Train Paretic Hand and Arm Separate
Eight three hour training sessions of robotically facilitated hand and arm training in complex virtual environments, using activities that train the fingers in isolation and other activities that train the arm in isolation.
HAS Training
Robotically measured and facilitated training of the hemiparetic hand and arm in isolation, in a three dimensional haptically rendered virtual environment.
Train Paretic Hand and Arm Together
HAT training
Robotically measured and facilitated training of the hemiparetic hand and arm as an integrated functional unit, in a three dimensional haptically rendered virtual environment
Train Both Hands Together in VE
Bimanual Training
Robotically measured and facilitated training of the hemiparetic hand and non-hemiparetic hand together, in a three dimensional haptically rendered virtual environment
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
HAS Training
Robotically measured and facilitated training of the hemiparetic hand and arm in isolation, in a three dimensional haptically rendered virtual environment.
HAT training
Robotically measured and facilitated training of the hemiparetic hand and arm as an integrated functional unit, in a three dimensional haptically rendered virtual environment
Bimanual Training
Robotically measured and facilitated training of the hemiparetic hand and non-hemiparetic hand together, in a three dimensional haptically rendered virtual environment
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Residual upper extremity impairment that affects participation
* At least ten degrees of active finger extension
* Tolerate passive shoulder flexion to chest level
Exclusion Criteria
* Severe aphasia
18 Years
80 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Rutgers, The State University of New Jersey
OTHER
New Jersey Institute of Technology
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Sergei V. Adamovich PhD
Associate Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Sergei V. Adamovich, PhD
Role: PRINCIPAL_INVESTIGATOR
New Jersey Institute of Technology
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
New Jersey Institute of Technology
Newark, New Jersey, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Adamovich SV, Fluet GG, Tunik E, Merians AS. Sensorimotor training in virtual reality: a review. NeuroRehabilitation. 2009;25(1):29-44. doi: 10.3233/NRE-2009-0497.
Tunik E, Adamovich SV. Remapping in the ipsilesional motor cortex after VR-based training: a pilot fMRI study. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1139-42. doi: 10.1109/IEMBS.2009.5335392.
Fluet GG, Merians AS, Qiu Q, Lafond I, Saleh S, Ruano V, Delmonico AR, Adamovich SV. Robots integrated with virtual reality simulations for customized motor training in a person with upper extremity hemiparesis: a case study. J Neurol Phys Ther. 2012 Jun;36(2):79-86. doi: 10.1097/NPT.0b013e3182566f3f.
Tunik E, Saleh S, Adamovich SV. Visuomotor discordance during visually-guided hand movement in virtual reality modulates sensorimotor cortical activity in healthy and hemiparetic subjects. IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):198-207. doi: 10.1109/TNSRE.2013.2238250. Epub 2013 Jan 9.
Bagce HF, Saleh S, Adamovich SV, Krakauer JW, Tunik E. Corticospinal excitability is enhanced after visuomotor adaptation and depends on learning rather than performance or error. J Neurophysiol. 2013 Feb;109(4):1097-106. doi: 10.1152/jn.00304.2012. Epub 2012 Nov 28.
Bagce HF, Saleh S, Adamovich SV, Tunik E. Visuomotor gain distortion alters online motor performance and enhances primary motor cortex excitability in patients with stroke. Neuromodulation. 2012 Jul;15(4):361-6. doi: 10.1111/j.1525-1403.2012.00467.x. Epub 2012 Jun 1.
Saleh S, Adamovich SV, Tunik E. Resting state functional connectivity and task-related effective connectivity changes after upper extremity rehabilitation: a pilot study. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4559-62. doi: 10.1109/EMBC.2012.6346981.
Saleh S, Adamovich SV, Tunik E. Mirrored feedback in chronic stroke: recruitment and effective connectivity of ipsilesional sensorimotor networks. Neurorehabil Neural Repair. 2014 May;28(4):344-54. doi: 10.1177/1545968313513074. Epub 2013 Dec 26.
Yarossi M, Adamovich S, Tunik E. Sensorimotor cortex reorganization in subacute and chronic stroke: A neuronavigated TMS study. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5788-91. doi: 10.1109/EMBC.2014.6944943.
Schettino LF, Adamovich SV, Bagce H, Yarossi M, Tunik E. Disruption of activity in the ventral premotor but not the anterior intraparietal area interferes with on-line correction to a haptic perturbation during grasping. J Neurosci. 2015 Feb 4;35(5):2112-7. doi: 10.1523/JNEUROSCI.3000-14.2015.
Qiu Q, Fluet GG, Lafond I, Merians AS, Adamovich SV. Coordination changes demonstrated by subjects with hemiparesis performing hand-arm training using the NJIT-RAVR robotically assisted virtual rehabilitation system. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1143-6. doi: 10.1109/IEMBS.2009.5335384.
Adamovich SV, Fluet GG, Merians AS, Mathai A, Qiu Q. Incorporating haptic effects into three-dimensional virtual environments to train the hemiparetic upper extremity. IEEE Trans Neural Syst Rehabil Eng. 2009 Oct;17(5):512-20. doi: 10.1109/TNSRE.2009.2028830. Epub 2009 Aug 7.
Adamovich SV, Fluet GG, Mathai A, Qiu Q, Lewis J, Merians AS. Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study. J Neuroeng Rehabil. 2009 Jul 17;6:28. doi: 10.1186/1743-0003-6-28.
Merians AS, Fluet GG, Qiu Q, Saleh S, Lafond I, Davidow A, Adamovich SV. Robotically facilitated virtual rehabilitation of arm transport integrated with finger movement in persons with hemiparesis. J Neuroeng Rehabil. 2011 May 16;8:27. doi: 10.1186/1743-0003-8-27.
Fluet GG, Merians AS, Qiu Q, Davidow A, Adamovich SV. Comparing integrated training of the hand and arm with isolated training of the same effectors in persons with stroke using haptically rendered virtual environments, a randomized clinical trial. J Neuroeng Rehabil. 2014 Aug 23;11:126. doi: 10.1186/1743-0003-11-126.
Fluet GG, Merians AS, Qiu Q, Rohafaza M, VanWingerden AM, Adamovich SV. Does training with traditionally presented and virtually simulated tasks elicit differing changes in object interaction kinematics in persons with upper extremity hemiparesis? Top Stroke Rehabil. 2015 Jun;22(3):176-84. doi: 10.1179/1074935714Z.0000000008. Epub 2015 Jan 22.
Puthenveettil S, Fluet G, Qiu Q, Adamovich S. Classification of hand preshaping in persons with stroke using Linear Discriminant Analysis. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4563-6. doi: 10.1109/EMBC.2012.6346982.
Boos A, Qiu Q, Fluet GG, Adamovich SV. Haptically facilitated bimanual training combined with augmented visual feedback in moderate to severe hemiplegia. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3111-4. doi: 10.1109/IEMBS.2011.6090849.
Qiu Q, Adamovich S, Saleh S, Lafond I, Merians AS, Fluet GG. A comparison of motor adaptations to robotically facilitated upper extremity task practice demonstrated by children with cerebral palsy and adults with stroke. IEEE Int Conf Rehabil Robot. 2011;2011:5975431. doi: 10.1109/ICORR.2011.5975431.
Rohafza M, Fluet GG, Qiu Q, Adamovich S. Correlations between statistical models of robotically collected kinematics and clinical measures of upper extremity function. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4120-3. doi: 10.1109/EMBC.2012.6346873.
Rohafza M, Fluet GG, Qiu Q, Adamovich S. Correlation of reaching and grasping kinematics and clinical measures of upper extremity function in persons with stroke related hemiplegia. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3610-3. doi: 10.1109/EMBC.2014.6944404.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.