Endothelial Progenitor Cells in Cervical Cancer Patients Receiving Chemoradiation

NCT ID: NCT00753610

Last Updated: 2018-08-17

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Total Enrollment

30 participants

Study Classification

OBSERVATIONAL

Study Start Date

2007-01-31

Study Completion Date

2019-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Invasive carcinoma of the uterine cervix remains the most common invasive cancer in women in many countries. Concurrent chemoradiotherapy (CCRT) is now recommended as a standard treatment for locally advanced and high-risk cervical carcinoma. However, CCRT achieves a better control of cervical cancer accompanied by greater morbidity. To avoid unnecessary over-treatment, the optimization of CCRT is of critical importance. Herein, the development of a surrogate marker for monitoring treatment efficacy as well as toxicity is pivotal to optimize CCRT.

Circulating endothelial progenitor cells (EPC), derived from bone marrow, can be used as a marker for optimizing and monitoring the anti-angiogenesis therapy including angiogenesis inhibitors and metronomic chemotherapy. Preclinical models indicated that the source of apoptotic circulating endothelial cells (CEC) was most likely the tumor vasculature. In breast cancer patients, apoptotic CEC were demonstrated to be a surrogate marker for efficacy of metronomic therapy.

In this grant, we intent to monitor the levels of circulating EPC/CEC in locally advanced cervical cancer patients before, during and after CCRT.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Invasive carcinoma of the uterine cervix remains the most common invasive cancer in women in many countries. Concurrent chemoradiotherapy (CCRT) is now recommended as a standard treatment for locally advanced and high-risk cervical carcinoma (1-3). Although the local control rate and survival have improved with use of CCRT, the treatment does cause greater toxicity in the bone marrow and other normal tissues compared with that caused by conventional RT. Our previous study demonstrated that serial changes in serum cytokines during chemoradiation correlated with tumor regression and treatment morbidity. The sudden elevation of serum TGF-beta 1 and VEGF levels after the first fraction of brachytherapy correlate with the development of greater RT morbidity. Higher pretreatment TGF-beta 1 and VEGF levels are associated with poor tumor response to chemoradiation (4). It implicates that angiogenic factor, such as VEGF, may play roles in the toxicity and outcome of CCRT. However, it still lacks a surrogate marker for prediction of clinical outcome of CCRT.

The most commonly used chemotherapeutic drugs combined with radiation as radiosensitizers are cis-platinum and 5-fluorouracil. These drugs, especially cis-platinum, are toxic to kidney, myelosuppressive and prone to cause life-threatening neutropenia, anemia or thrombocytopenia, which are more severe than those with radiotherapy alone (1-3). To avoid unnecessary over-treatment, the optimization of CCRT is of critical importance. Herein, the development of a surrogate marker for monitoring treatment efficacy as well as toxicity is pivotal to optimize CCRT.

Angiogenesis is a heavily regulated process, which is involved by complex interactions between inhibitory and stimulatory angiogenic factors. It is essential for tumor growth, progression and metastasis and is correlated with poor prognosis in cancer patients including cervical cancer (5). Many novel compounds, such as EGCG (6), that potently inhibit formation of neoplastic blood vessels have been recently developed. There is increasing interest in developing angiogeneis-suppressive agents for cancer treatment and growing number of anti-angiogenesis drugs currently being evaluated in clinical trials for various malignancies. Promising results have been reported include an increase in overall survival and reduction in the risk of death (Bevacizumab), reversal of cellular drug resistance (Cetuximab) and activity as second-line therapy in colorectal cancer patients who have exhausted other available treatment options (Cetuximab, ABX-EGF, PTK-787, Gefitinib, Erlotinib) (7,8).

Although the therapeutic role of angiogenesis target therapy has been approved in cancer treatment, the way to optimize the dose of angiogenesis inhibitors remains to be determined because of the lack of reliable surrogate markers of tumor angiogenesis. Shaked et al. reported that the levels of circulating endothelial progenitor cells (EPC), which contribute to the tumor vessel formation, reflect the anti-tumor efficacy of anti-angiogenesis regimens (9,10). Growing evidence suggests that the levels of circulating EPC reflect the response to chemotherapy both in animal model and clinical trial (11-13). Thus, circulating EPC can be used as a marker for optimizing and monitoring the anti-angiogenesis therapy including angiogenesis inhibitors and chemotherapy.

Circulating endothelial cells (CEC), especially apoptotic CEC, were observed to increase in breast cancer patients with a clinical benefit (defined as a clinical response or a stable disease) after metronomic therapy (14). Preclinical models indicated that the source of apoptotic CEC was most likely the tumor vasculature (14).

Whether circulating EPC or CEC can be served as markers of CCRT efficacy and toxicity in cervical cancer or not remains undetermined. Since CCRT is now a standard treatment of locally advanced and high-risk cervical cancer, the development of the surrogate marker for monitoring CCRT response and optimize treatment intensity, again, is very important.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Cervical Cancer

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

CASE_CONTROL

Study Time Perspective

PROSPECTIVE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Receiving chemoradiation

Exclusion Criteria

* Stage IVB
Minimum Eligible Age

20 Years

Maximum Eligible Age

80 Years

Eligible Sex

FEMALE

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Science and Technology Council, Taiwan

OTHER_GOV

Sponsor Role collaborator

Mackay Memorial Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Yu-Jen Chen

Head, Department of Radiation Oncology

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Yu-Jen Chen, MD,PhD

Role: PRINCIPAL_INVESTIGATOR

Mackay Memorial Hospital

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Mackay Memorial Hospital

Taipei, , Taiwan

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Taiwan

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Yu-Jen Chen, MD,PhD

Role: CONTACT

886 2 28094661 ext. 3060

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Chia-Yuan Liu, MD

Role: primary

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

MMH-I-S-354

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

India HIV-CervCa Project
NCT07167069 ACTIVE_NOT_RECRUITING
Sentinel Lymph Nodes Biopsy in Cervical Cancer
NCT06169787 ACTIVE_NOT_RECRUITING