High-frequency-ultrasound Annular Arrays for Ophthalmic Imaging

NCT ID: NCT00633854

Last Updated: 2019-03-28

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

30 participants

Study Classification

OBSERVATIONAL

Study Start Date

2008-02-29

Study Completion Date

2010-04-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The objective of this research is to improve the care of ocular disease and disorders, in particular the changes in the eye associated with diabetes, by providing clinicians with dramatically improved ultrasonic images of the entire eye. The research combines advanced high-frequency, high-resolution ultrasonic annular arrays transducers with new processing techniques designed to overcome several limits that have been reached with conventional high-frequency ultrasound systems. We propose that diagnosis of eye diseases using annular arrays can be more effective than the conventional ultrasound images by at least 50%; i.e., that for every 2 posterior vitreous detachments detected conventionally, 3 will be detected with the annular arrays.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

In this study, we will deploy annular-array systems and assess their experimental and clinical utility for ophthalmic imaging. We hypothesize that a 20-MHz annular array will detect posterior vitreous detachment (PVD) more reliably than a conventional single element ultrasound system. Clinically, we will test the hypothesis that 20-MHz annular arrays improve detection of PVD, an important risk factor for disease progression in diabetic retinopathy. Diabetic retinopathy is the leading cause of blindness in the working population (25 to 65 years) and the third major cause of legal blindness in the U.S.

We propose to carry out a study of 30 human subjects, aged 60 years or above, in whom PVD is likely to be present as a consequence of normal aging. The study will compare the ability to detect PVD using a commercial ophthalmic ultrasound system equipped with 10- and 20-MHz sector scan probes (Cinescan A/B-S, Quantel Medical), and OCT (OCT/SLO, Ophthalmic Technologies, Inc.), and the 20-MHz annular array. The annular array will be used with synthetic focusing and simulated single-element mode. The end point will be the fraction of eyes in which the PVD is visualized with each technique. This comparison is designed to demonstrate the improvement in our ability to visualize this pathologic entity using the advanced signal processing modes to be explored in this study. PVD can represent a risk factor for retinal detachment and retinal neovascularization in diabetics and localization of vitreoretinal traction points may be crucial for management. The present study, however, is limited to visualization of PVD in older normal subjects, about 75% of which would be expected to have PVD present. Thus, our aim is purely to develop an improved imaging modality rather than demonstrating its clinical efficacy in management of diabetic retinopathy or other ocular diseases.

The imaging technologies that we are developing could potentially result in patents or other intellectual property, which would be managed by the Cornell Research Foundation and Riverside Research Institute. This is alluded to in the consent form for the sake of completeness.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Posterior Vitreous Detachment

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

CROSS_SECTIONAL

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

1

30 volunteer subjects who are age 60 and older

Ultrasound examination

Intervention Type PROCEDURE

Immersion Ultrasound Exam: In the immersion technique, the patient lies down on the examination table. A steridrape with a central aperture is used to form a water-tight seal around the eye. After installation of 2 drops of 0.5% proparacaine HCl, a wire lid speculum is used to hold the patient's lids open. Warm 0.9% sterile saline solution is then used to create a waterbath about 1/2 inch deep to provide acoustic coupling between the transducer and the eye. The transducer (either the 10- and 20-MHz sector scan probe or the annular array) is placed in the waterbath, but does not touch the eye.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Ultrasound examination

Immersion Ultrasound Exam: In the immersion technique, the patient lies down on the examination table. A steridrape with a central aperture is used to form a water-tight seal around the eye. After installation of 2 drops of 0.5% proparacaine HCl, a wire lid speculum is used to hold the patient's lids open. Warm 0.9% sterile saline solution is then used to create a waterbath about 1/2 inch deep to provide acoustic coupling between the transducer and the eye. The transducer (either the 10- and 20-MHz sector scan probe or the annular array) is placed in the waterbath, but does not touch the eye.

Intervention Type PROCEDURE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Subjects should be age 60 or older with possible posterior vitreous detachment in the back of the eye.

Exclusion Criteria

* none
Minimum Eligible Age

60 Years

Maximum Eligible Age

85 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Riverside Research Institute

OTHER

Sponsor Role collaborator

Weill Medical College of Cornell University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Weill Cornell Medical College

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Ronald H Silverman, PhD

Role: PRINCIPAL_INVESTIGATOR

Weill Medical College of Cornell University

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Weill Cornell Medical College

New York, New York, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Silverman RH, Ketterling JA, Mamou J, Coleman DJ. Improved high-resolution ultrasonic imaging of the eye. Arch Ophthalmol. 2008 Jan;126(1):94-7. doi: 10.1001/archopht.126.1.94.

Reference Type BACKGROUND
PMID: 18195224 (View on PubMed)

Silverman RH, Ketterling JA, Coleman DJ. High-frequency ultrasonic imaging of the anterior segment using an annular array transducer. Ophthalmology. 2007 Apr;114(4):816-22. doi: 10.1016/j.ophtha.2006.07.050. Epub 2006 Nov 30.

Reference Type BACKGROUND
PMID: 17141314 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

EB008606

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.